首页|列车司机手势识别方法研究

列车司机手势识别方法研究

扫码查看
按照司乘标准执行规定的手势是列车司机驾驶操作的重要环节,通过对司机手势进行检测,能够有效评估列车司机的驾驶状态和操作质量,保证列车行车安全.传统人工检查方式效率低,难以满足实际需求,现有的手势识别算法存在模型参数量大、检测精度较低、检测速度慢等问题.随着智能铁路的发展,利用深度学习方法构建轻量化、高效、高精度的列车司机手势识别模型逐渐成为行业发展需求.针对上述需求,提出一种基于改进YOLOv5的列车司机手势识别模型.首先,引入轻量化卷积PConv改进YOLOv5中的C3模块,降低检测网络的参数量和计算量,提升模型检测效率,并在其后添加CBAM模块,加强重要特征信息,抑制无关信息的干扰,强化检测网络特征提取能力;其次,在颈部层引入BiFPN网络结构替换PANet网络结构,增强不同尺度特征的融合能力,同时通过新增小目标检测层,提高模型对小目标的检测能力;最后,选择Focal-EIoU作为边界框损失优化模型损失函数,加快模型的收敛速度,提高手势定位精度.实验结果表明,改进模型在测试集下mAP@0.5可达97.7%,平均检测时间为23.2 ms,相较于YOLOv5计算量降低了23.1%,mAP@0.5和平均检测时间分别提升了0.6个百分点和7.1 ms.所提模型可在降低参数量和计算量的同时有效提高检测精度和检测效率,可为列车司机手势识别提供新思路.
Research on gesture recognition method for train driver
Executing prescribed gestures according to the standard of train operation is a critical procedure of train driver.The driving state and operation quality of train drivers can be effectively evaluated by detecting gestures of drivers,which ensures the safety of train operation.The traditional manual inspection method is inefficient.The algorithm of existing gesture recognition has the problems of considerable number of model parameters,low accuracy and slow speed of detection.With the development of intelligent railways,using deep learning methods to build a lightweight,efficient,and high-precision train driver gesture recognition model has gradually become a demand for industry development.In response to the above demand,a train driver gesture recognition model based on improved YOLOv5 was proposed.First,the lightweight convolution named PConv was introduced to optimize the C3 module for reducing parameters and calculating the amount of the network,and to improve the efficiency of model detection.Meanwhile,the Convolutional Block Attention Module was added to the interference of irrelevant information and enhanced the feature extraction ability.Second,bidirectional feature pyramid network(BiFPN)was introduced to replace the Path Aggregation Network(PANet)in the neck layer,which enhanced the fusion ability of multi-scale features and improved the detection ability of small targets by adding a small target detection layer.Finally,the bounding box loss of the model selected Focal-EIoU,which speeds up the convergence rate of the model and improved the accuracy of gesture positioning.The experimental results show that the mean average precision(mAP@0.5)of the improved model reached 97.7%,and the average detection time of improved model was 23.2 ms.As compared to YOLOv5,the amount of calculation was reduced by 23.1%,the mean average precision of the improved model was improved by 0.6 percentage points,and the average detection time was reduced by 7.1 ms.The model can effectively improve the detection efficiency and accuracy while reducing the number of model parameters,which can provide new ideas for train driver gesture recognition.

train drivergesture recognitionYOLOv5PConvCBAM module

李小平、代旭鹏、孙守庆、朱高伟

展开 >

兰州交通大学 自动化与电气工程学院,甘肃 兰州 730070

兰州交通大学 机电工程学院,甘肃 兰州 730070

兰州交通大学 电子与信息工程学院,甘肃 兰州 730070

列车司机 手势识别 YOLOv5 PConv CBAM模块

甘肃省科学技术厅"科技助力经济2020"重点专项

SQ2020YFF0403641

2024

铁道科学与工程学报
中南大学 中国铁道学会

铁道科学与工程学报

CSTPCD北大核心EI
影响因子:0.837
ISSN:1672-7029
年,卷(期):2024.21(2)
  • 25