首页|基于粒子群算法的复杂山区铁路土方调配与取弃土场选址协同优化

基于粒子群算法的复杂山区铁路土方调配与取弃土场选址协同优化

扫码查看
复杂山区铁路线路土方调配及取弃土场选址对铁路项目的成本、工期、安全性、环境影响程度等产生长久深远影响,二者之间存在着复杂关联耦合关系.然而,既有方法忽略了上述联系,难以实现铁路线路土方调配与取弃土场选址协同优化.对于复杂山区铁路线路,构建了融合调配段落划分点、土方调配量、取弃土场的统一自变量集合,考虑了土方调配、取弃土场选址复杂约束,以土方调配成本、取弃土场建设成本及便道建设成本的综合费用为目标函数,集成综合基础信息子系统、土方调配优化子系统与取弃土场选址优化子系统,建立了土方调配与取弃土场选址的协同优化模型.为求解此协同优化模型,提出一种基于粒子群算法的累进求解策略.首先根据线路划分土方调配段落,进入土方调配优化子系统求得土方调配解,借助移动窗口法构建取弃土场备选池,进入取弃土场选址优化子系统求得取弃土场址解;其次,基于粒子群算法通过更新线路土方调配段落划分来累进迭代寻求最优解.以某复杂山区铁路为例,对铁路线路土方调配及取弃土场选址协同优化模型进行案例验证,与人工方案相比,最终机选最优方案可节省13.77%的综合费用.测试结果表明本方法的有效性,可提高铁路土方调配与取弃土场选址求解效率,为设计人员提供参考.
Concurrent optimization of earthwork allocation and borrow/waste site selection of complex mountain railway alignments based on particle swarm optimization algorithm
The earthwork allocation and the borrow/waste site selection of complex mountain railway alignments have a long-term and far-reaching impact on the cost,duration,safety,environmental impact of railway projects,and there is a complex coupled relationship between them.However,existing methods overlook the above relationship,and rarely relieve the concurrent optimization of earthwork allocation and the borrow/waste site selection.For complex mountain railway alignments,firstly,a unified set of independent variables was constructed that integrated the division points of the allocation section,the volume of earthwork allocation,and the borrow/waste site selection.Taking into account the complex constraints of earthwork allocation and the borrow/waste site selection.The objective function was the comprehensive cost of earthwork allocation cost,the site construction cost,and the access roads construction cost.The comprehensive basic information subsystem,earthwork allocation optimization subsystem,and the borrow/waste site selection optimization subsystem were integrated.The concurrent optimization model of earthwork allocation and borrow/waste site selection was established.To solve this concurrent optimization model,a progressive solution strategy based on particle swarm optimization algorithm was proposed.Firstly,divide the earthwork allocation sections based on the route,enter the earthwork allocation optimization subsystem to obtain the earthwork allocation solution,use the moving window method to construct an alternative pool for the borrow/waste site,and enter the borrow/waste site selection optimization subsystem to obtain the solution for the borrow/waste site.Secondly,based on particle swarm optimization algorithm,progressively search the optimal solution by updating the section division of the railway earthwork allocation.Taking a complex mountain railway as an example,a case study is conducted to validate the concurrent optimization model of earthwork allocation and the borrow/waste site selection.Compared with manual solutions,the final machine selected optimal solution can save 13.77%of the comprehensive cost.The results indicate the effectiveness of this method,which can improve the efficiency of solving earthwork allocation and the borrow/waste site selection problems and provide reference value for designers.

railway alignmentsearthwork allocationborrow/waste site selectionconcurrent optimizationprogressive solution algorithm

吕春妍、蒲浩、宋陶然、李伟、彭利辉、钟晶、徐占军

展开 >

中南大学 土木工程学院,湖南 长沙 410075

高速铁路建造技术国家工程研究中心, 湖南 长沙 410075

中国中铁股份有限公司,北京 100039

中铁第四勘察设计院集团有限公司,湖北 武汉 430063

湖南中大设计院有限公司,湖南 长沙 410018

展开 >

铁路线路 土方调配 取弃土场选址 协同优化 累进求解算法

国家自然科学基金国家重点研发计划(十四五)中国中铁股份有限公司科技研发计划中南大学—湖南中大设计院有限公司工程建设设计信息化技术研发中心开放课题

520784972021YFB26004002022-重大-20KJ-2021-04

2024

铁道科学与工程学报
中南大学 中国铁道学会

铁道科学与工程学报

CSTPCD北大核心EI
影响因子:0.837
ISSN:1672-7029
年,卷(期):2024.21(3)
  • 17