首页|基于放电电压平台研究的蓄电池寿命状态评估

基于放电电压平台研究的蓄电池寿命状态评估

扫码查看
为解决传统动车组镍镉蓄电池的返修方法导致部分蓄电池在触发返修条件前已性能劣化,同时大量已达返修标准的蓄电池性能并未过度衰退的问题,设计单体镍镉蓄电池全寿命加速老化实验并获取相关实验数据.首先,采用集成经验模态方法建立单体电池全寿命健康状态类别划分模型,然后运用离散小波变换消除放电电压平台数据的奇异值,进而利用极限学习机算法预测蓄电池寿命状态,最终实现对蓄电池全生命周期寿命的准确预测与健康状态评估功能.实验结果表明:相较于传统的蓄电池寿命阈值分类方法,运用集成经验模态建立的健康状态类别划分模型能有效避免蓄电池寿命末端出现误警情况.作为融合算法模型输入的放电电压平台数据易获取,基于离散小波变换的数据预处理方法可提升算法准确率近3%,最终可达到96%~98%.此外,相对于传统的神经网络模型,融合算法模型不涉及迭代,因而能兼顾算法的预测精度与计算效能.蓄电池识别健康状态的F1值为0.976 3,识别老化阶段的F1值为0.950 9,识别故障阶段的F1值为0.939 394.相较于传统的依据动车组运营里程和使用年限进而决定蓄电池是否返修的方法,融合算法模型提供了显著的评判标准,能判别蓄电池是否应该返修,并有效地识别蓄电池的健康状态,降低了动车组的运营成本,保障动车组运营安全,为电池寿命评判和检修策略的优化提供参考.
Battery life assessment based on discharge voltage platform research
To address the issue of certain batteries in traditional EMUs experiencing performance degradation prior to meeting repair conditions due to the repair method involving nickel-cadmium batteries,as well as the problem of a significant number of batteries meeting repair standards but not exhibiting excessive performance decline.The whole life accelerated aging experiment of single nickel cadmium battery was designed and the relevant experimental data were obtained.Firstly,the integrated empirical mode method was used to establish the classification model of the whole life health state of the single battery.Then,the discrete wavelet transform was used to eliminate the singular value of the discharge voltage platform data,and then the extreme learning machine algorithm was used to predict the life state of the battery.Finally,the accurate prediction and health state assessment function of the whole life cycle of the battery were realized.The experimental results show that compared with the traditional battery life threshold classification method,the health status classification model established by ensemble empirical mode can effectively avoid false alarms at the end of battery life.The discharge voltage platform data as the input of the fusion algorithm model is easy to obtain.The data preprocessing method based on discrete wavelet transform can improve the accuracy of the algorithm by nearly 3%,and finally reach 96%~98%.In addition,compared with the traditional neural network model,the fusion algorithm model does not involve iteration.It can take into account the prediction accuracy and computational efficiency of the algorithm.The F1 value for identifying the health status of the battery is 0.976 3,the F1 value for identifying the aging stage is 0.950 9,and the F1 value for identifying the fault stage is 0.939 394.Compared with the traditional method of determining whether the battery should be repaired based on the operating mileage and service life of the EMU,the fusion algorithm model provides a significant evaluation criterion,effectively identifies the health status of the battery,reduces the operating cost of the EMU,and ensures the safe operation of the EMU,providing a reference for battery life evaluation and maintenance strategy optimization.

life assessmentintegrated empirical mode decompositiondiscrete wavelet transformextreme learning machinedischarge voltage platformonline detection

成庶、吕壮壮、刘畅、向超群

展开 >

中南大学 交通运输工程学院,湖南 长沙 410075

寿命评估 集成经验模态分解 离散小波变换 极限学习机 放电电压平台 在线检测

国家自然科学基金

52072414

2024

铁道科学与工程学报
中南大学 中国铁道学会

铁道科学与工程学报

CSTPCD北大核心EI
影响因子:0.837
ISSN:1672-7029
年,卷(期):2024.21(3)
  • 1
  • 17