首页|基于双通道注意力机制的AE-BIGRU交通流预测模型

基于双通道注意力机制的AE-BIGRU交通流预测模型

扫码查看
交通流预测是智能交通系统的关键.针对目前交通流数据复杂的时空关联性以及自身的不确定性,为准确预测高速公路交通流并缓解交通拥堵问题,提出以自编码器网络(AE)和双向门控循环单元(BIGRU)相结合的深度学习组合预测模型(AE-BIGRU),并在此基础上引入双通道注意力机制进行模型训练.将预处理后的数据采用滑动窗口的方式作为参数输入模型,通过AE提取交通流的空间特征,得到输入信息特征的最优抽象表示;利用BIGRU从前向和后向传播中获取信息,充分提取交通流的时间相关特征,更全面地捕捉时间演变规律;最后结合双通道注意力机制,增强预测模型的特征提取能力,最大限度地保留特征信息,提升模型的预测精度,从而得到最终短时流量的预测目标值.为验证模型的适用性,采用多组短时交通流数据进行仿真实验,与其他基准模型对比发现:该交通流预测模型能够有效捕获交通流的动态时空特征,加强关键信息的提取,所预测的流量更加接近真实值,具有良好的泛化能力.其中测试集的均方根误差值下降了约0.061~0.604,平均绝对误差值下降了约0.025~0.512,相关系数值R2提高了约0.007~0.062.研究结果表明,随着预测步长的增加,该实验模型在交通流数据的时间特性上仍能表现出稳定的预测性能,所建的组合预测模型在预测精度和鲁棒性方面表现出更高水平.
AE-BIGRU traffic flow prediction model based on dual attention network
Traffic Flow Prediction is key to intelligent transportation systems. To accurately estimate highway traffic flow and resolve traffic congestion issues due to the complicated spatio-temporal correlation of current traffic flow data and its own uncertainties. Therefore,a dual attentional mechanism was developed for model training based on a deep learning combinatorial prediction model (AE-BIGRU) that combines an autoencoder (AE) and a bi-directional gated recurrent unit (BIGRU). For obtaining the best possible abstract representation of the input information features,AE extracted the spatial features of the traffic flow from the preprocessed data using a sliding window. To extract the time-related aspects of the traffic flow and capture the time evolution pattern,BIGRU was used to acquire information from both forward and backward propagation. The dual-channel attention mechanism was integrated with it to improve the prediction model's ability to extract features,maximize feature information retention,and increase prediction accuracy. This yielded a forecasted goal value for the short-term flow rate's final value. Using multiple sets of short-term traffic flow data,simulation experiments were carried out to test the model's applicability,and comparisons with other benchmark models were discovered. The conclusions are drawn as follows. The predicted flow is more accurate than the actual number and has strong generalizability thanks to the model's ability to capture the dynamic spatiotemporal aspects of traffic flow. The mean absolute error values of the test set reduced by approximately 0.025 to 0.512. The root mean square error values decreased by approximately 0.061 to 0.604. and the correlation coefficient values,R2,increased by approximately 0.007 to 0.062. The experimental model can continue to perform predictably as the prediction step size is increased. The combined prediction model created can show a higher level of prediction accuracy and robustness.

intelligent transportationtraffic flow predictionAE-BIGRU modeldeep learningdual-channel attention mechanism

黄艳国、何烜、杨仁峥

展开 >

江西理工大学 电气工程与自动化学院,江西 赣州 341000

智能交通 交通流预测 AE-BIGRU模型 深度学习 双通道注意力机制

国家自然科学基金

72061016

2024

铁道科学与工程学报
中南大学 中国铁道学会

铁道科学与工程学报

CSTPCD北大核心EI
影响因子:0.837
ISSN:1672-7029
年,卷(期):2024.21(5)
  • 21