首页|高速列车受电弓区域气动噪声的尺度效应研究

高速列车受电弓区域气动噪声的尺度效应研究

扫码查看
受限于风洞尺寸和仿真计算规模,研究高速列车气动噪声问题时,通常采用缩比模型.然而,由于受电弓区域的流场结构复杂,缩比模型的使用会导致雷诺数减小,从而改变流场结构,进而影响气动噪声特性.为探明模型尺度对气动噪声声源分布和辐射噪声强度的影响,结合大涡模拟和Ffowcs Williams-Hawkings积分方程,研究高速列车受电弓区域不同缩比尺度下的气动激扰特征、表面偶极子声能和远场辐射噪声声压级.研究结果表明:随着模型尺寸减小,流动主尺度从受电弓上部迁移到受电弓下部.流场变化导致声场主发声源随之迁移,受电弓区域的整体辐射噪声呈下降趋势.1/4、1/8、1/16、1/25和1/50比例的缩比模型辐射噪声分别为97.40,95.39,94.30,92.48和88.1 dB(A).其中,1/4比例的缩比模型受电弓上部声源声功率占比为32%,受电弓区域整体声源谱型存在2个峰值,峰值频率由弓头和上臂杆产生;而在1/50缩比模型中受电弓下部声源声功率占比为87%,受电弓区域整体声源谱型呈现宽频特征,与受电弓腔谱型特征一致.研究结果揭示模型缩小导致的误差是非线性的,进行缩比模型试验时,需要根据具体的缩比尺度对声源特征进行相应的修正,以便更准确地反映实际情况.研究结果可为缩比模型试验仿真以及未来高速列车的低气动噪声设计提供参考依据.
Study on the scale effects of aerodynamic noise in pantograph region of high-speed train
Due to limitations of both the limited size of the acoustic wind tunnel and the computational resources,the study of aerodynamic noise in high-speed trains typically employs scaled models. However,scaled models result in reduced Reynolds numbers,altering flow field structures and affecting radiated noise. To delve deeper into the effects of scaling on aerodynamic noise in the pantograph region,this study employed scaled models at ratios of 1/4,1/8,1/16,1/25,and 1/50,using Large Eddy Simulation (LES) and the Ffowcs Williams-Hawkings (FW-H) integral equation. The aerodynamic disturbance characteristics,surface dipole sound energy,and far-field radiation sound pressure levels in the overhead pantograph area of high-speed trains were investigated for different scale models. The research found that the transition in the flow field leads to the migration of sound sources within the pantograph,subsequently influencing its radiated noise characteristics. Research findings reveal that as model sizes decrease,the primary flow scale in the pantograph region shifts from the upper part to the lower part. This transition in the flow field leads to the migration of sound sources within the pantograph,subsequently influencing its radiated noise characteristics. As the size of the pantograph model decreases,radiated noise decreases. The sound pressure levels of the scaled models at 1/4,1/8,1/16,1/25,and 1/50 ratios are 97.40 dB(A),95.39 dB(A),94.30 dB(A),92.48 dB(A),and 88.1 dB(A),respectively. In the 1/4 scale model,the upper pantograph source contributes to 32% of the total sound power,and the overall acoustic spectrum in the pantograph exhibits two peaks with peak frequencies generated by the pantograph head and upper arm. In the 1/50 scaled model,the lower pantograph source contributes to 87% of the total sound power,and the overall acoustic spectrum in the pantograph exhibits a broad frequency characteristic,consistent with the pantograph cavity. The research findings reveal that the errors resulting from model scaling-down are non-linear. Therefore,appropriate corrections should be made during scale-down experiments based on the scaling factor and different acoustic characteristics.

high-speed trainpantographaeroacousticsscale effectsequivalent sound source

袁思齐、杨志刚、李雪亮、谭晓明、马瑞轩

展开 >

中南大学 交通运输工程学院 轨道交通安全教育部重点实验室,湖南 长沙 410075

中南大学 轨道交通安全关键技术国际合作联合实验室,湖南 长沙 410075

湖南理工学院 激光磨削复合智能制造与服役性能优化重点实验室,湖南 岳阳 414006

中国空气动力研究与发展中心 气动噪声控制重点实验室,四川 绵阳 621000

展开 >

高速列车 受电弓 气动声学 尺度效应 等效声源

气动噪声控制重点实验室研究基金资助项目中国国家铁路集团有限公司科技研究开发计划课题超导电动磁浮关键技术研究与工程样车研制项目(噪声研究气动部分)国家自然科学基金资助项目中南大学研究生科研创新项目

2101ANCL20210302P2019J00852272363512340003

2024

铁道科学与工程学报
中南大学 中国铁道学会

铁道科学与工程学报

CSTPCD北大核心EI
影响因子:0.837
ISSN:1672-7029
年,卷(期):2024.21(8)