首页|基于多源差异对抗的高速列车小幅蛇行识别

基于多源差异对抗的高速列车小幅蛇行识别

扫码查看
高速列车的蛇行运动会增加车辆各部分的载荷,剧烈的蛇行运动会使得轮轨间产生较大冲击,产生脱轨的风险,严重威胁到行车安全,因此需要对车辆的蛇行状态进行识别,特别是对蛇行失稳状态开始之前的小幅蛇行状态的识别.目前大多数的研究主要集中在利用单工况数据进行的深度学习以及单源迁移学习,然而高速列车在运行时面临复杂多变的工况.考虑到不同工况下的多源域数据具有不同的分布,仅使用单个工况数据建立的列车蛇行识别模型很难满足各种工况下的识别精度要求.提出一种基于多源双层差异对抗的高速列车小幅蛇行状态识别方法.该方法在训练过程中使用多个工况下具有不同分布的真实蛇行运动数据,并采用双层差异对抗训练策略.初层差异对抗中结合矩匹配模块和领域对抗模块,使得模型既能减小源域与目标域的分布差异,也能减小源域与源域的分布差异.在初层差异对抗的基础上,采用次层差异对抗训练方法,使得模型能够进一步对齐数据的边缘分布和条件分布,从而更好地学习可区分的特征,提高诊断任务的准确性.通过公共轴承数据验证该模型可行性后,用于高速列车蛇行状态识别研究中.实验结果表明,该方法能够正确识别出蛇行运动的不同状态,几种不同识别任务准确率均在99%以上,其诊断效果明显优于单源模型以及其他多源模型,证明了该方法的可靠性.说明该方法在高速列车蛇行状态智能监控中具有一定的工程应用价值.
High-speed train small-amplitude hunting recognition based on multi-source discrepancy adversarial network
The hunting motion of a high-speed train can increase the load on all parts of the vehicle.The vigorous hunting motion can cause a greater risk of impact or even derailment between the wheels and rails,which seriously threatens the safety of driving.Therefore,it is necessary to recognize the hunting state of the vehicle,especially the small-amplitude hunting state before the onset of the hunting instability.The majority of current research is centered around deep learning and single-source transfer learning with single-condition data.However,high-speed trains face complex and changing conditions during operation.Taking into account the different distributions of multi-source data under various working conditions,it is difficult to satisfy the recognition accuracy requirements across different working conditions with a train hunting recognition model built using only a single working condition data.The paper proposed a high-speed train small-amplitude hunting state recognition method based on multi-source two-layer discrepancy adversarial network.The method used real hunting motion data with different distributions under multiple working conditions in the training process,and adopted the two-layer discrepancy adversarial training strategy.The initial layer of disparity confrontation combined a moment matching module and a domain confrontation module.This layer model reduced both the distributional differences between the source and target domains as well as the distributional differences between the source and source domains.On the basis of the primary layer of difference confrontation,a secondary layer of difference confrontation training method was used.This layer model was able to further align the marginal and conditional distributions of the data to better learn distinguishable features and improve the accuracy of the diagnostic task.After the feasibility of the model was verified by public bearing data,it was used in the high-speed train hunting state recognition study.The experimental results demonstrate that the method accurately recognizes different states of hunting motion.It can achieve over 99% accuracy in various recognition tasks and outperforms both single-source and other multi-source models in diagnostic effectiveness,proving its reliability.The method has certain engineering application value in the intelligent monitoring of the state of hunting of high-speed trains.

high-speed trainsmall-amplitude huntingmulti-source domain transfer learningtwo-layer discrepancy adversarialfault recognition

刘鑫、宁静、王子轩、洪梓轩、张兵、陈春俊

展开 >

西南交通大学 机械工程学院,四川 成都 610031

西南交通大学 轨道交通运载系统全国重点实验室,四川 成都 610031

高速列车 小幅蛇行 多源域迁移学习 双层差异对抗 故障识别

国家自然科学基金资助项目国家自然科学基金资助项目四川省科技计划资助项目

51975486523724022020JDTD0012

2024

铁道科学与工程学报
中南大学 中国铁道学会

铁道科学与工程学报

CSTPCD北大核心EI
影响因子:0.837
ISSN:1672-7029
年,卷(期):2024.21(9)
  • 6