首页|基于元模型和自适应算法的卷状货物运输托盘多目标优化

基于元模型和自适应算法的卷状货物运输托盘多目标优化

扫码查看
铁路卷状货物运输托盘设计、改进等工作往往依靠工程经验,通过仿真分析、实物检测的组合方式.然而,这种设计方法过于依赖个人经验,设计效率低,试验资源浪费严重,难以达到预期效果.为将传统设计思路转化为数学优化问题,引入元模型和自适应多目标优化算法对运输托盘进行设计、改进.建立托盘三维模型,制定装载加固方案,进行静载、冲撞工况仿真分析;对托盘进行强度试验(静载、冲击试验),检验仿真分析可靠性;采用SolidWorks和Ansys协同仿真技术,搭建参数驱动化CAE仿真环境;提出基于最大最小距离准则和ESP诱导协同优化的最优拉丁超立方取样方法,创建高维参数空间矩阵;以各工况许用应力、变形阈值为约束,建立多目标优化数学模型;比较不同元模型精度,选择GWO-BP神经网络,搭载自适应第三代非支配排序遗传算法(A-NSGA-Ⅲ)获得最佳参数组合,实现托盘轻量化、不同工况应力最小化.研究结果表明:以铁路RTKD款卷状货物运输托盘为例,进行多目标优化设计,发现托盘仿真分析与实际试验值误差均少于11%,仿真应力分布趋势与实测基本吻合;优化后,托盘质量减少27.97kg,2种工况最大应力分别减少23.01MPa和37.21MPa,符合铁路货物安全运输需求.研究结果为同类型运输托盘的设计、改进提供了工程参考,对铁路卷状货物运输发展有重要促进作用.
Multi-objective optimization of rolled goods transport pallet based on meta-models and adaptive optimization algorithms
The design and improvement of transport pallets for the railway transportation of rolled goods often rely on engineering experience,utilizing a combination of simulation analysis and actual strength testing.However,this design approach excessively depends on individual experience,resulting in diminished design efficiency,substantial waste of experimental resources,and challenges in achieving the anticipated outcomes.To transform the conventional design approach into a mathematical optimization problem,the introduction of meta-models and adaptive multi-objective optimization algorithms was proposed for the design and enhancement of transport pallets.Establish a three-dimensional model for the pallet,formulate loading reinforcement scheme,and conduct simulation analyses under static and impact loading conditions.Perform strength tests on the pallet,including both static and impact trials,to validate the reliability of simulation analyses.Employ a collaborative simulation approach using SolidWorks and Ansys,establishing a parameter-driven CAE simulation environment.Propose an optimal Latin hypercube sampling method based on the maximum-minimum distance criterion and ESP-induced joint optimization,creating a high-dimensional parameter space matrix.Utilize permissible stress and deformation thresholds for various pallet conditions as constraints to formulate a multi-objective optimization mathematical model.Compare the precision of different types of meta-models,select the GWO-BP neural network,couple it with the adaptive third-generation non-dominated sorting genetic algorithm (A-NSGA-Ⅲ) to obtain the optimal parameter combination,ultimately achieving pallet lightweight,and minimizing stress under two distinct operational conditions.Research findings indicate that,taking the example of the railway RTKD-type transport pallet for rolled goods,multi-objective optimization design is conducted.It is observed that the error between simulated analysis and actual experimental values for the pallet was consistently less than 11%,with the simulated stress distribution closely aligning with the measured values.Post-optimization,the pallet's mass is reduced by 27.97 kg,and the maximum stresses under the two conditions decreases by 23.01 MPa and 37.21 MPa,respectively,aligning with the safety requirements for railway goods transportation.The research results can provide engineering references for the design and improvement of similar transport pallets,playing a crucial role in promoting the development of railway transportation for rolled goods.

railway rolled goods transport palletfinite element analysisstatic load testimpact testmeta-modelsA-NSGA-Ⅲ

潘帅、袁舜、王振东、王戍培

展开 >

北京交通大学 交通运输学院,北京 100044

兰州交通大学 铁路货物装载加固研究与咨询中心,甘肃 兰州 730070

中国铁道科学研究院集团有限公司,北京 100081

铁路卷状货物运输托盘 有限元 静载试验 冲击试验 元模型 A-NSGA-Ⅲ

国家自然科学基金资助项目中国国家铁路集团有限公司科技研究开发计划甘肃省教育厅"双一流"科研重点项目

71761023N2020X015GSSYLXM-04

2024

铁道科学与工程学报
中南大学 中国铁道学会

铁道科学与工程学报

CSTPCD北大核心EI
影响因子:0.837
ISSN:1672-7029
年,卷(期):2024.21(9)
  • 6