首页|基于深度神经网络的7065铝合金厚板应力检测模型

基于深度神经网络的7065铝合金厚板应力检测模型

扫码查看
针对工业生产中传统超声应力检测法对铝合金厚板在不同拉伸率和不同温度条件下存在的测量误差的问题,以7065铝合金厚板为实验对象,提出一种在不同拉伸率和不同温度条件下的基于树突神经网络的应力预测模型与传统超声检测法融合的应力检测模型,然后使用改进的GSA-GRNN对该应力检测模型进行温度补偿.以南南铝公司生产的7065铝合金厚板为研究对象,使用恒温槽为超声检测提供恒温环境,分别对不同拉伸率、不同温度下的7065铝合金厚板进行超声检测,将声时差、拉伸率作为输入参数,应力作为输出参数,创建一个基于树突神经网络的应力检测模型,然后将应力检测模型的输出作为输入,使用改进的GSA-GRNN建立温度补偿模型对应力检测模型进行温度补偿.研究结果表明:融合了传统超声声时差的检测模型均方根误差为0.84636,相关系数为0.99743,和其他神经网络模型对比,该模型拥有更好的精度;在对该模型进行温度补偿后,模型的应力均方根误差和相关系数分别可以达到0.78848和0.99844,模型的精度得到了进一步的提升.证明基于数据驱动的神经网络融合传统超声检测可以有效降低检测误差,同时省去传统检测方法人工计算应力的时间,提高了检测效率.研究结果可以为基于数据驱动的应力检测模型提供进一步的优化参考.
Stress detection model of 7065 aluminum alloy thick plate based on deep neural network
Aiming at the problem of measuring error of the traditional ultrasonic stress detection method on the aluminum alloy thick plate under different tensile ratio and different temperature conditions in industrial production,a stress detection model based on the dendritic neural network stress prediction model and the traditional ultrasonic detection method under different tensile rates and different temperature conditions was proposed.The improved GSA-GRNN was used to compensate the temperature of the stress detection model.In this study,7065 aluminum alloy thick plate produced by Nannan Aluminum Company was taken as the research object,and a constant temperature tank was used to provide a constant temperature environment for ultrasonic testing.Ultrasonic testing was carried out on 7065 aluminum alloy thick plate under different tensile rates and different temperatures,and the sound time difference and tensile rate were taken as input parameters and the stress as output parameters.A stress detection model based on dendritic neural network was created.Then,the output of the stress detection model was taken as input,and the improved GSA-GRNN was used to build a temperature compensation model to compensate the stress detection model.The results are shown as follows.The root-mean-square error and correlation coefficient of the detection model integrating the traditional ultrasonic sound time difference are 0.84636 and 0.99743.Compared with other neural network models,this model can have better accuracy.After temperature compensation,the stress root-mean-square error and correlation coefficient of the model can reach 0.78848 and 0.99844,respectively.The accuracy of the model has been further improved,which proves that the data-driven neural network integrated with traditional ultrasonic detection can effectively reduce the detection error,save the time of manual stress calculation of traditional detection methods,and improve the detection efficiency.The research results can provide further optimization reference for stress detection model based on data-driven.

stress detectiondendritic neural networkparticle swarm optimizationgravity search algorithmacoustic time difference

杨小平、武修瑞、郑许、任月路、朱玉涛、何克准、卢祥丰、莫红楼

展开 >

桂林理工大学 物理与电子信息工程学院,广西 桂林 541004

桂林理工大学 广西嵌入式技术与智能系统重点实验室,广西 桂林 541004

桂林理工大学 计算机科学与工程学院,广西 桂林 541004

广西南南铝加工有限公司,广西 南宁 530031

广西铝合金材料与加工重点实验室,广西 南宁 530031

展开 >

应力检测 树突神经网络 粒子群算法 万有引力搜索算法 声时差

广西科技重大专项项目广西重点研发计划项目

桂科AA23023027桂科AB23026149

2024

铁道科学与工程学报
中南大学 中国铁道学会

铁道科学与工程学报

CSTPCD北大核心EI
影响因子:0.837
ISSN:1672-7029
年,卷(期):2024.21(9)
  • 13