首页|高速列车升力翼气动外形设计

高速列车升力翼气动外形设计

扫码查看
为探索下一代高速列车升力翼技术开发应用空间和气动条件,明确升力翼翼型优选气动结构和运行工作姿态关键技术参数,提出高速铁路限界约束条件下列车升力翼及翼身融合设计方法,重点从升力翼气动设计、运行姿态和安装布置进行了研究.结果表明:与平凸型和平凸型(带掠角)升力翼相比,平凸型(带偏角)升力翼在整体增升效果、减阻特性、流场效应及与车顶流线型契合度等方面具备较好的综合优势,升力系数为1.15,其中在速度450 km/h工作时,气动升力贡献达19.08 kN,气动阻力仅占升力的32.7%.升力翼所受气动力与小角度迎角呈二次抛物线关系变化,约在迎角为18°附近范围常态化工作时,气动效率达到最高135%.升力翼以速度450 km/h按单节车辆单套布设运行时,产生的气动升力是中国标准动车组最大轮轴垂向力的10%以上,具备良好的增升特性.结合铁路限界、翼型几何参数和车顶设备设施空间布局,升力翼优选起升高度在400~800 mm范围内变化工作时,随着起升高度的降低,气动阻力基本保持不变,但有效增升特性显著.升力翼列车技术开发是实现下一代更高速轮轨列车和磁浮列车减阻增升与节能降耗的有效措施,具备良好的应用前景,下阶段应重点关注升力翼高速列车多运行工况下的一体化协同控制和恶劣风环境下的行车安全问题.
Aerodynamic design of lifting wing for high-speed trains
This study explored the potential and aerodynamic conditions for the application of lift wing technology in next-generation high-speed trains.It aimed to clarify the optimal aerodynamic structure of lift wing airfoils and the critical technical parameters of their operational postures.The research proposed a design method for integrating lift wings with the body of the train under the constraints of high-speed railway limits.It focused on the aerodynamic design of lift wings,their operational attitudes,and installation arrangements.The findings indicate that compared to flat-convex and swept flat-convex lift wings,skewed flat-convex lift wings exhibit superior overall lift enhancement,drag reduction characteristics,flow field effects,and compatibility with the streamlined shapes of the train roofs.The lift coefficient is 1.15,achieving an aerodynamic lift of 19.08 kN at a speed of 450 km/h,where the aerodynamic drag constitutes only 32.7%of the lift.The aerodynamic forces on the lift wings relate quadratically with the angle of attack,peaking at an angle of approximately 18°,where aerodynamic efficiency reaches up to 135%.At a speed of 450 km/h,configured per single train car set,the generated aerodynamic lift surpasses 10%of the maximum vertical axle load of the standard Chinese high-speed train unit,demonstrating excellent lift enhancement characteristics.Considering the railway limits,airfoil geometrical parameters,and spatial layout of equipment on the train roof,the preferred lift height for lift wings operates within a range of 400~800 mm.As the lift height decreases,the aerodynamic drag remains nearly constant,but the effective lift enhancement significantly improves.The development of lift wing technology for high-speed trains represents an effective measure for achieving higher speeds in next-generation wheel-rail and maglev trains through drag reduction and energy savings.It holds promising application prospects,with future focus recommended on the integrated synergistic control in various operational states of high-speed lift wing trains and safety issues under adverse wind conditions.

high-speed trainsaerodynamicslift wingsaerodynamic designnumerical simulation

谢红太、王红

展开 >

兰州交通大学 机电工程学院,甘肃 兰州 730070

华设设计集团股份有限公司,江苏 南京 210014

高速列车 空气动力学 升力翼 气动设计 数值模拟

2024

铁道科学与工程学报
中南大学 中国铁道学会

铁道科学与工程学报

CSTPCD北大核心EI
影响因子:0.837
ISSN:1672-7029
年,卷(期):2024.21(12)