首页|基于多尺度动态时空神经网络的OD客流预测

基于多尺度动态时空神经网络的OD客流预测

扫码查看
精确的OD(origin-destination)客流预测可为铁路运行管理、决策优化等提供良好保障.为准确捕捉高速铁路站点间的动态时空关联,解决全局流量特征和局部拓扑特征难以共同学习的问题,提出一种考虑站间协同作用的多尺度动态时空神经网络(multi-scale synergistic station-based dynamic spatio-temporal neural network,MSSDSTNN)OD客流预测模型.模型多分支并行结构的设计,可以有效地捕获与客流量相关的复杂时空特征;通过融合全局与局部注意力机制,达到识别站点间动态时空关联及线网拓扑结构的目的;同时采用自适应噪声完全集成经验模式分解方法对站点的原始客流数据进行分析,并引入简化粒子群算法实现对长短期记忆神经网络关键参数的动态寻优.选取成绵乐城际与成渝高铁的客流数据,在不同时间粒度下,运用12种既有模型进行比较研究,以评估它们与MSSDSTNN模型的性能差异.结果表明:MSSDSTNN模型比其他模型具有更高的预测精度和拟合效果,尤其在较短的时间粒度下,MSSDSTNN模型展现出显著的优越性.在15 min时间粒度下,MSSDSTNN模型的平均绝对误差、均方根误差、平均绝对百分比误差相较于对比方法中性能排名第2的预测模型分别下降了7.55%、12.12%和26.15%;在拟合优度方面,MSSDSTNN模型的决定系数相较于第2名上升了0.41%.可视化结果展现了模型对时空关联动态变化的学习效果,消融实验证明了各分支的必要性,所提方法可为运营部门的决策提供有价值的参考.
OD passenger flow prediction based on multi-scale dynamic spatio-temporal neural network
Precise Origin-Destination(OD)passenger flow predictions serve as a robust foundation for enhancing railway operation management and facilitating decision-making optimizations.A Multi-Scale Synergistic Station-based Dynamic Spatio-Temporal Neural Network(MSSDSTNN)model for OD passenger flow forecast of high-speed railway stations,was proposed in this paper by considering the inter-station synergistic effects.The MSSDSTNN model was designed to precisely grasp the dynamic spatio-temporal relationships among high-speed railway stations,addressing the challenge of jointly learning global flow characteristics and local topological features.It employed a multi-branch parallel structure,enabling the effective extraction of complex spatio-temporal features associated with passenger flow.By integrating both global and local attention mechanisms,the MSSDSTNN model achieved the goal of identifying dynamic spatio-temporal connections between stations as well as capturing the topological structure of the network.Additionally,the model employed the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)algorithm to analyze the raw passenger flow data at stations.Furthermore,it utilized the Simplified Particle Swarm Optimization(SPSO)algorithm for dynamically optimizing key parameters of the Long Short-Term Memory(LSTM)neural network.Using passenger flow data of the Chengdu-Mianyang-Leshan Intercity Railway and Chengdu-Chongqing High-Speed Railways,comparative studies at various temporal granularities were conducted.The comparative studies were conducted using twelve existing passenger flow prediction models to compare the difference of their performance with the MSSDSTNN model.The results demonstrate that the MSSDSTNN has higher prediction accuracy and fitting effectiveness,especially in the short time granularities,demonstrating its significant superiority.At a 15-minute time granularity,the MSSDSTNN model demonstrates reductions in mean absolute error,root mean square error,and mean absolute percentage error by 7.55%,12.12%,and 26.15%,respectively,when compared with the second-best performing prediction model.In terms of goodness of fit,the coefficient of determination for the MSSDSTNN model increased by 0.41%compared with the second-ranked model.Additionally,the visualization results demonstrate the learning effect of the model on capturing the dynamic changes of spatio-temporal correlations,while the ablation studies confirm the necessity of each branch within the model.The proposed method can provide valuable references for the decision-making of the operation departments.

high-speed railwayOD passenger flow predictiondynamic spatio-temporal neural networkspatial-temporal featuresattention mechanism

林立、孟学雷、高如虎、韩正、付艳欣

展开 >

山东交通学院 轨道交通学院,山东 济南 250357

兰州交通大学 交通运输学院,甘肃 兰州 730070

中国铁路设计集团有限公司,天津 300308

高速铁路 OD客流预测 动态时空神经网络 时空特征 注意力机制

2024

铁道科学与工程学报
中南大学 中国铁道学会

铁道科学与工程学报

CSTPCD北大核心EI
影响因子:0.837
ISSN:1672-7029
年,卷(期):2024.21(12)