首页|基于改进分数去噪网络的铁路场景点云模型去噪方法

基于改进分数去噪网络的铁路场景点云模型去噪方法

扫码查看
基于点云数据的逆向建模是铁路工程数字化发展的关键步骤,也是铁路数字孪生、结构健康监测等各种延伸应用的基础.为解决传统直接依赖无人机航测数据构建的点云模型存在精度低、可靠性差等问题,尤其是对于复杂的铁路场景,易导致模型与实际偏差过大,提出一种改进的分数去噪网络(Improved Score-based Denoised Network,ISDNet).该网络在传统分数去噪网络的基础上构建了一套全新的编码器与解码器,在提高三维点云模型精度的同时,有效降低了计算复杂度和计算成本.该算法既减少了无人机逆向三维点云建模过程中由于环境扰动等因素产生的离散噪点,在铁路基础设施的结构细节处理上有较好的表现,将重建后的点云模型测量点坐标与全站仪测量的坐标进行了对比验证.实验验证结果表明,基于ISDNet网络去噪后的铁路场景三维模型的误差降低至原始模型的一半,各测量点间X方向的平均误差为5.67 mm,Y方向的平均误差为6.67 mm,Z方向的平均误差为6.83 mm.去噪后的三维点云模型有效减少了接触网、钢轨等细节数据的丢失,并显示出了更强的形状表征性,能够更清晰.本文所提方法能够实现铁路场景点云模型的高效去噪,并将模型精度进行提高,有效减少了点云模型中各构件细节的丢失,能够为相关的延伸应用提供可靠的技术支持.
Railway scenes point cloud model denoising based on improved score-based denoised network
Reverse modeling based on point cloud data is a pivotal step in the digital advancement of railway engineering,serving as the foundation for various extended applications such as digital twins of railways and structural health monitoring.Traditional point cloud models constructed directly from unmanned aerial vehicle(UAV)survey data often suffer from low accuracy and poor reliability,particularly in complex railway environments,leading to significant deviations between the models and actual structures.To address these issues,this study introduced an Improved Score-based Denoised Network(ISDNet),which constructed a new set of encoders and decoders on the foundation of traditional score-based denoising networks.This network not only enhances the precision of three-dimensional point cloud models but also effectively reduces computational complexity and costs.The algorithm decreases discrete noise caused by environmental disturbances during the UAV-based reverse 3D point cloud modeling process and performs well in handling structural details of railway infrastructure.The reconstructed point cloud model's coordinate points were compared and validated against coordinates measured by a total station.Experimental results indicate that the error in the 3D models of railway scenes denoised with the ISDNet network was reduced to half of that of the original models,with average errors of 5.67 mm in the X direction,6.67 mm in the Y direction,and 6.83 mm in the Z direction.The denoised 3D point cloud model effectively minimizes the loss of detail data in elements such as the catenary system and rails and exhibits enhanced shape representativeness for clearer visibility.The method proposed in this paper can realize the efficient denoising of the point cloud model of the railway infrastructure and improve the accuracy of the point cloud model,which effectively reduces the loss of the details of each component in the point cloud model,and can provide reliable technical support for the related extended applications.

UAV 3D point cloud modelrailway engineeringdeep learningpoint cloud denoisingmacro modeling

闫斌、汪思成、胡文博、王卫东、邱实、李正、王劲

展开 >

中南大学 土木工程学院,湖南 长沙 410075

中南大学 重载铁路工程结构教育部重点实验室,湖南 长沙 410075

中南大学 轨道交通基础设施智能监控研究中心,湖南 长沙 410075

香港理工大学 土木与环境工程系,中国 香港 999077

香港理工大学 国家轨道交通电气化与自动化工程技术研究中心香港分中心,中国 香港 999077

展开 >

无人机三维点云模型 铁路工程 深度学习 点云去噪 宏观建模

2024

铁道科学与工程学报
中南大学 中国铁道学会

铁道科学与工程学报

CSTPCD北大核心EI
影响因子:0.837
ISSN:1672-7029
年,卷(期):2024.21(12)