首页|基于PSO-ML-AdaBoost模型的级配碎石最优压实参数智能预测研究

基于PSO-ML-AdaBoost模型的级配碎石最优压实参数智能预测研究

扫码查看
为实现高铁路基级配碎石填料最优压实参数快速准确的确定,对填料的最优压实参数及其智能预测展开研究.首先,基于共振作用下振动压实参数确定方法,综合压实物理和力学指标得到级配碎石填料最优压实状态下的最优频率fop和最优含水率wop;其次,通过填料性能试验建立级配碎石填料特征与fop和wop的关系,并采用灰色关联度分析算法明确影响fop和wop的主控特征;最后,将主控特征作为输入特征建立预测fop和wop的3种典型机器学习(Machine Learning,ML)模型,并融合AdaBoost算法解决基础ML算法的不足,建立PSO-ML-AdaBoost模型.结合三层次预测模型评价体系确定最优预测模型,并基于消融分析进一步验证最优预测模型的可靠性.结果表明:取wop为临界含水率,fop为填料的固有频率,可获得级配碎石填料压实状态最优的试样;揭示影响fop和wop的主控特征为最大粒径dmax、级配参数b和m,粗骨料细长比Ei、洛杉矶磨耗Laa、吸水率Wac和Waf;综合三层次评价结果,得到PSO-BPNN-AdaBoost模型的综合评价指标Cei(fop/wop)值为12.264 5/1.838 2,低于其他ML融合算法,为最优预测模型;结合消融分析结果发现,PSO-BPNN-AdaBoost模型的输入参数对于fop和wop预测结果的影响程度与灰色关联度分析算法所得结果一致,进一步说明最优预测模型预测结果的可靠性.研究成果可为路基填料最优压实参数的确定提供新思路,并对高铁路基的压实质量智能评估提供理论指导.
Research on intelligent prediction of optimal compaction parameters for graded gravel based on PSO-ML-AdaBoost model
To achieve the rapid and accurate determination of optimal compaction parameters for graded gravel in high-speed railway subgrades,the research was conducted on optimal compaction parameters and the intelligent prediction of fillers.First,based on the method of determining vibration compaction parameters under resonance,the optimal frequency(fop)and optimal water content(wop)for graded gravel under the optimal compaction state were obtained by combining the compaction physical and mechanics indicators.Second,the relationship between the features of graded gravel and fop/wop was established through filler performance tests.The Grey Relational Analysis(GRA)algorithm was applied to determine the key features influencing fop and wop.Lastly,the dominant features were used as input parameters to establish three typical Machine Learning(ML)models for predicting fop and wop.The PSO-ML-AdaBoost model was established using the AdaBoost algorithm to address limitations in basic ML algorithms.The optimal prediction model was determined based on a three-level assessment system for prediction model,and the reliability of the optimal prediction model was further verified through ablation analysis.The results indicated that setting wop as the critical water content and fop as the inherent frequency of the filler can optimize the compacted state of graded gravel.The dominant features influencing fop and wop included the maximum particle size(dmax),grading parameters(b,m),coarse aggregate aspect ratio(Ei),Los Angeles abrasion(Laa),and water absorption rates(Wac,Waf).Based on the comprehensive evaluation results of the three-level assessment system,the comprehensive evaluation index(Cei)values for predicting fop/wop using the PSO-BPNN-AdaBoost model were 12.264 5/1.838 2,which were lower than those of other ML integration algorithms,suggesting it as the optimal predictive model.Combining the results of the ablation analysis,it was indicated that the input parameters of the PSO-BPNN-AdaBoost model had a consistent impact on the predictions of fop and wop,consistent with the results obtained by GRA,further confirming the reliability of the optimal predictive model.The research results provide novel insights into determining the optimal compaction parameters for subgrade fillers and offer theoretical guidance for the intelligent assessment of compaction quality in high-speed railway subgrades.

high-speed railway graded gravelvibratory compactionkey featuresmachine learningablation study

陈晓斌、郝哲睿、谢康、闫宏业、李泰灃、尧俊凯、邓志兴

展开 >

中南大学 土木工程学院,湖南 长沙 410075

中国铁道科学研究院集团有限公司 铁道建筑研究所,北京 100081

高铁级配碎石 振动压实 主控特征 机器学习 消融分析

2024

铁道科学与工程学报
中南大学 中国铁道学会

铁道科学与工程学报

CSTPCD北大核心EI
影响因子:0.837
ISSN:1672-7029
年,卷(期):2024.21(12)