首页|基于MLS点云的多尺度盾构隧道渗水病害检测网络

基于MLS点云的多尺度盾构隧道渗水病害检测网络

扫码查看
在盾构隧道中,渗水问题常导致电力系统短路、设备腐蚀以及结构劣化等后果.然而,现有的渗水病害检测技术存在智能化程度低、精度和效率不足的问题.针对这一挑战,提出一种基于点云强度图像的智能化渗水病害检测方法.首先,利用移动激光扫描设备在弱光环境的隧道条件下收集三维点云数据,标注构建了渗水病害数据集.然后,针对多尺度渗水目标,设计了高性能的目标检测网络.该网络集成了专为处理多尺度渗水信息而设计的可重构上下文信息融合模块,并设计了渗水的难例挖掘损失函数,以提高模型对多尺度渗水目标和具有挑战性目标的检测能力.为简化模型复杂度,使用改进后的轻量化检测头结构减小模型的大小.最后,通过在渗水病害数据集上进行训练和测试,实验结果表明,该模型实现了93.59%的渗水病害识别率,AP指标相比原模型提高了3.69%.此外,改进后的模型相比于原模型计算量减少了47.15%.消融实验和对比实验进一步验证了该方法的有效性以及相对于其他方法的优势.总体而言,该方法在效率和精度上都取得了显著效果,为盾构隧道渗水病害检测提供了有效保障,有助于确保隧道的安全运行.
Multi-scale shield tunnel water leakage detection network based on mobile laser scanning point clouds
In shield tunnels,water leakage often leads to short circuits in electrical systems,equipment corrosion,and structural deterioration.However,existing water leakage technologies are detected with low intelligence.Moreover,the precision and efficiency are insufficient to meet the requirements of shield safety monitoring.Therefore,this paper proposed an intelligent water leakage detection method based on point cloud intensity images.First,mobile laser scanning equipment was used to collect three-dimensional point cloud data in tunnel conditions with low light.In addition,a water leakage dataset was constructed and annotated.Then,a high-performance target detection network was designed to detect multi-scale water leakage regions.This network integrated a reconfigurable contextual information fusion module,which is specifically designed for handling multi-scale water leakage information.Then,a hard example mining loss function was explored for water leakage to enhance the capability to detect multi-scale and challenging targets.Moreover,an improved lightweight header structure was used to reduce the size and complexity of the model.Finally,through training and testing on the water leakage dataset,experimental results showed that the model achieved a high water leakage recognition rate of 93.59%,with an increase of 3.69%in the AP index compared to the original model.Additionally,the improved model reduced computational workload by 47.15%.Ablation experiments and comparative experiments further showed that the effectiveness of the proposed method is better than that of the comparison methods.Overall,this method significantly improved the efficiency and accuracy of detecting water leakage.It can be used for safety monitoring in shield tunnels.

shield tunnelwater leakage detectionmobile laser scanningobject detectionYOLOv8

刘振宇、高贤君、杨元维、王少宁、许磊、于盛妍、寇媛、刘波

展开 >

长江大学 地球科学学院,湖北 武汉 430100

中国铁路设计集团有限公司,天津 300308

内蒙古自治区测绘地理信息中心,内蒙古 呼和浩特 010050

湖南省第一测绘院,湖南 长沙 421001

东华理工大学 自然资源部环鄱阳湖区域矿山环境监测与治理重点实验室,江西 南昌 330013

展开 >

盾构隧道 渗水检测 移动激光扫描 目标检测 YOLOv8

2024

铁道科学与工程学报
中南大学 中国铁道学会

铁道科学与工程学报

CSTPCD北大核心EI
影响因子:0.837
ISSN:1672-7029
年,卷(期):2024.21(12)