首页|基于Selenium框架+随机森林模型的农产品价格分析

基于Selenium框架+随机森林模型的农产品价格分析

扫码查看
农产品作为中国市场经济体制中的重要战略资源,其价格波动不仅会给消费者带来影响,还会影响生产经营活动.在大数据技术赋能农业发展的背景下,研究构建了一个基于Selenium框架+随机森林模型,用于实时采集、可视化分析以及序列预测的地方农产品大数据平台系统.将该预测系统和决策树模型、支持向量机(support vector machines,SVM)模型的预测效果进行对比分析,研究发现:该平台的数据采集实时性强,预测效果较决策树模型和SVM模型更好.
Analysis of Agricultural Product Prices Based on Selenium Framework and Random Forest Model
As an important strategic resource in C51hina's market economic system, price fluctuations of agricultural products will not only affect consumers, but also affect the production risks of producers and operators. In the context of big data technology empowering agricultural development, the study constructed a local agricultural product big data platform system based on the Selenium framework+random forest model for real-time collection, visual analysis and sequence prediction. The prediction effects of this prediction system and the decision tree model and support vector machines (SVM) model were compared and analyzed. The study finds that the platform has strong real-time data collection and the prediction effect is better than the decision tree model and SVM model.

agricultural product price forecastSelenium frameworkrandom forest modeldecision tree modelSVM model

黎明辉、张金刚

展开 >

湛江幼儿师范专科学校,广东湛江 524084

农产品价格预测 Selenium框架 随机森林模型 决策树模型 SVM模型

湛江市非资助科技攻关计划(2021)

2021B01494

2024

湖南邮电职业技术学院学报
长江通信职业技术学院

湖南邮电职业技术学院学报

影响因子:0.424
ISSN:2095-7661
年,卷(期):2024.23(1)
  • 7