首页|三通道不可分小波与深度学习的红外与可见光图像融合方法

三通道不可分小波与深度学习的红外与可见光图像融合方法

扫码查看
目前,随着计算机科学基础学科日益成熟,深度学习和人工智能也飞速发展,深度学习能提取图像深层次特征,有效弥补人工滤波器提取深度信息方面的不足.提出二维不同通道的不可分小波与深度学习结合的红外与可见光图像融合算法.介绍了三通道不可分小波的理论基础,构造了与此相对应的滤波器组,把图像进行分解获得低频子图像与高频子图像.再利用区域能量取大对低频图像进行融合;利用ImageNet训练完成的VGG-19网络提取高频子图像更多、更深层次的特征信息.权重图是把每层的图像信息进行softmax算子运算得到的,利用权重图得到最终阶段的高频子图像.采用同样的办法对网络的前三层进行操作,使用最大值选择策略对三个高频子图进行融合得到最终的高频子图像.做不可分小波逆变换得到最终的融合图像.与其他相关方法比较,此方法在主客观方面具有较好的效果表现.
Infrared and Visible Light Image Fusion Method for Three-Channel Inseparable Wavelet and Deep Learning
At present,with the increasing maturity of the basic discipline of computer science,deep learning and artificial intelligence are also developing rapidly,deep learning can extract deep features of images,which can effectively make up for the deficiency of deep information extracted by artificial filters.The paper puts forward the infrared and visible image fusion algorithm which is two-dimensional with different channels for inseparable wavelet and deep learning.The paper introduces the theoretical basis of three-channel inseparable wavelet,constructs the corresponding filter set,and decomposes the image to obtain low frequency subimage and high frequency subimage.The low-frequency images are fused by taking the maximum of the regional energy for reuse;the VGG-19 network trained by ImageNet was used to extract more and deeper feature information from the high-frequency subimages.The weight diagram is calculated by softmax operator of the image information of each layer,and the weight diagram is used to obtain the high-frequency subimage of the final stage.The same approach was used to manipulate the first three layers of the network,and the three high-frequency subgraphs were fused using the maximum value selection strategy to obtain the final high-frequency subimages.The inseparable wavelet inverse transformation is completed to obtain the final fusion image.Compared with other related methods,it has a better effect performance in the subjective and objective aspects.

inseparable waveletdeep learning networkimage fusionfusion specifications

郝昱权

展开 >

驻马店幼儿师范高等专科学校,河南 驻马店 463000

不可分小波 深度学习网络 图像融合 融合规格

2024

湖南邮电职业技术学院学报
长江通信职业技术学院

湖南邮电职业技术学院学报

影响因子:0.424
ISSN:2095-7661
年,卷(期):2024.23(4)