首页|一种基于边增强的K-Truss社区搜索算法

一种基于边增强的K-Truss社区搜索算法

扫码查看
社区搜索的目标是寻找包含查询节点的有凝聚力和有意义的社区,近年来引起了广泛的研究兴趣.与基于单个节点和边的低阶方法相比,K-Truss社区搜索方法旨在探索复杂网络的高阶结构.然而,查询结果通常会存在多子图和孤立节点的情况.因此,本文提出了一种基于边增强的K-Truss社区搜索算法(BEMCS)来解决碎片化问题.它包括以下步骤:首先,根据查询节点确定包含所需社区的粗子图.然后,测量子图中每个节点与查询节点的接近度,根据它们的接近度值将这些节点分为几个级别,较低级别的节点具有较高的接近度值.接下来,通过将较低级别的节点连接到其上级节点来增强边.最后,在增强子图上进行K-Truss社区搜索,以获得最终的社区.在各种网络上进行了大量的实验,实验结果表明该方法可以有效解决碎片化问题,并且比一些最先进的方法表现更好.
A K-Truss Community Search Algorithm Based on Edge Enhancement
The goal of community search is to find cohesive and meaningful communities containing query nodes,which has attracted extensive research interest in recent years.Compared with low-order methods based on single nodes and edges,K-Truss community search methods aim to explore the high-order structure of complex networks.However,the query results usually have multiple subgraphs and isolated nodes.Therefore,this paper proposes a K-Truss community search method(BEMCS)based on edge enhancement to solve the fragmentation problem.It includes the following steps:first,the coarse subgraph containing the desired community is determined according to the query node.Then,the proximity between each node in the subgraph and query node it is measured,and these nodes are divided into several levels according to their proximity values,with lower level nodes having higher proximity values.Next,the edges are enhanced by connecting the lower-level nodes to their upper-level nodes.Finally,a K-Truss community search is performed on the enhanced subgraph to obtain the final community.Conducting a large number of experiments on various networks,experiments results shown that the method can effectively solve the fragmentation problem and perform better than some of the most advanced methods.

edge enhancementcommunity searchfragmentation problemK-Truss

肖雁

展开 >

湖南三力信息技术有限公司,湖南 长沙 410125

边增强 社区搜索 碎片化问题 K-Truss

2024

湖南邮电职业技术学院学报
长江通信职业技术学院

湖南邮电职业技术学院学报

影响因子:0.424
ISSN:2095-7661
年,卷(期):2024.23(4)