首页|基于高光谱的草坪草光合参数模拟估算

基于高光谱的草坪草光合参数模拟估算

扫码查看
[目的]光合参数是衡量草坪草生长状况的重要生理指标,探索基于高光谱技术的草坪草光合参数的模拟估算对于草坪养护管理具有重要意义。[方法]以3个常用草坪草品种红象高羊茅(Fes-tuca arundinacea cv。Hongxiang)、百灵鸟多年生黑麦草(Lolium perenne cv。Bailingniao)和肯塔基草地早熟禾(Poa pratensis cv。Kentucky)为试验材料,通过盆栽试验,在草坪草生长旺盛期,使用SOC710VP成像光谱仪和CIRAS-3便携式光合仪分别测定了草坪草冠层光谱数据、净光合速率(Pn)和蒸腾速率(Tr),筛选与两种光合参数显著相关的原始光谱波段与植被指数,构建偏最小二乘法(PLS)估算模型,并利用PLS模型中变量投影重要性(Variable Importance Projection,VIP)方法筛选VIP值>1。2的重要波段与植被指数。[结果]1)共筛选与Pn显著相关的 54个原始光谱波段(435、450、460、475、490~550、560~565、590~725、990~1000、1015~1030 nm)与9个植被指数(GI、NDVI、NDVI670、CI、PSRI、NRI、SIPI、PRI、SR),其中原始光谱460 nm与植被指数CI相关系数绝对值最高,分别为0。46和0。77,共筛选与Tr显著相关的 115个原始光谱波段(435~440、450~1010 nm)与 7个植被指数(SIPI、SR、NDVI、NDVI670、MSR705、CI、DVI),其中原始光谱475 nm与植被指数SIPI相关系数绝对值最高,分别为0。61与0。54;2)Pn偏最小二乘法模型因变量方差解释率为75。24%,模型拟合精度R2 为0。95,均方根误差RMSE为0。1,Tr偏最小二乘法模型因变量方差解释率为73。43%,模型拟合精度R2为0。73,均方根误差RMSE为0。5,可满足反演需求;3)根据偏最小二乘法中变量投影重要性VIP法筛选最优指标,得出反演Pn的最优指标为CI,Tr最优指标为SR。[结论]草坪草净光合速率与蒸腾速率的偏最小二乘法光谱反演模型,为草坪草光合指标评估提供了更便利的方案。
Simulation and estimation of photosynthetic parameter of turfgrass based on hyperspectrum
[Objective]The photosynthetic parameters are important physiological indicators for assessing the growth status of turfgrass.It is of great significance for turf maintenance management to explore the simulated estima-tion of turfgrass photosynthetic parameters based on hyperspectral technology.[Method]In this experiment,three commonly used turfgrass species,"Hongxiang tall"fescue(Festuca arundinacea cv.Hongxiang),"Bailingniao"pe-rennial ryegrass(Lolium perenne cv.Bailingniao),and"Kentucky"Kentucky bluegrass(Poa pratensis cv.Ken-tucky),were selected as experimental materials.During the vigorous growth period of turfgrass,spectral data of turf-grass canopy,net photosynthetic rate(Pn),and transpiration rate(Tr)were measured using the SOC710VP imaging spectrometer and the CIRAS-3 portable photosynthesis system.The original spectral bands and vegetation indices sig-nificantly correlated with the two photosynthetic parameters were selected through pot experiments.Partial least squares(PLS)regression models were constructed,and the Variable Importance Projection(VIP)method was used to screen important spectral bands and vegetation indices with VIP values>1.2 in the PLS model.[Result]1)A to-tal of 54 original spectral bands(435,450,460,475,490~550,560~565,590~725,990~1000 nm,1015~1030 nm)and 9 vegetation indices(GI,NDVI,NDVI670,CI,PSRI,NRI,SIPI,PRI,SR)significantly correlated with Pn were selected.Among them,the absolute values of correlation coefficients between the original spectral band at 460 nm and the vegetation index CI were 0.46 and 0.77,respectively.A total of 115 original spectral bands(435~440 nm,450~1010 nm)and 7 vegetation indices(SIPI,SR,NDVI,NDVI670,MSR705,CI,DVI)significantly corre-lated with Tr were selected.Among them,the original spectral band at 475nm and the vegetation index SIPI had the highest absolute correlation coefficients of 0.61 and 0.54,respectively.2)The PLS regression model for Pn had a variance explanation rate of 75.24%,a model fitting accuracy(R2)of 0.95,and a root mean square error(RMSE)of 0.1,while the PLS regression model for Tr had a variance explanation rate of 73.43%,an R2 of 0.73,and an RMSE of 0.5,meeting the requirements of inversion.3)According to the VIP method in the PLS regression,the optimal in-dicator for estimating Pn was CI,and the optimal indicator for estimating Tr was SR.[Conclusion]The PLS regres-sion spectral inversion models for the net photosynthetic rate and transpiration rate of turfgrass provide a more conve-nient solution for the assessment of turfgrass photosynthetic indicators.

hyperspectrumturfgrassnet photosynthetic ratetranspiration ratepartial least squares model

刘桐、杜笑村、纪童、姜佳昌

展开 >

西安思源学院,陕西 西安 710038

甘肃省草原技术推广总站,甘肃 兰州 730010

甘肃农业大学草业学院,草业生态系统教育部重点实验室,甘肃省草业工程实验室,中-美草地畜牧业可持续发展研究中心,甘肃 兰州 730070

高光谱 草坪草 净光合速率 蒸腾速率 偏最小二乘法模型

林草科技创新与国家合作项目

lckjcx202303

2024

草原与草坪
中国草学会 甘肃农业大学

草原与草坪

CSTPCD
影响因子:0.686
ISSN:1009-5500
年,卷(期):2024.44(2)
  • 20