首页|基于BO-CNN-LSTM的锡林郭勒草原干旱预测模型

基于BO-CNN-LSTM的锡林郭勒草原干旱预测模型

扫码查看
[目的]建立基于BO-CNN-LSTM耦合神经网络的干旱预测模型,探索干旱预测的适用性。[方法]首先,基于长短期记忆网络(LSTM)的记忆功能,将其嵌入卷积神经网络(CNN)全连接层。其次,为确定最优超参数,将贝叶斯优化算法(BO)的概率代理模型和采集函数引入至LSTM。最后,建立BO-CNN-LSTM耦合神经网络模型用以预测干旱状况。[结果]1)BO-CNN-LSTM预测精度随时间尺度的增大而提高,对SPEI-12模拟精度最高,且判定系数R2均在98%以上;2)与LSTM模型SPEI-12的模拟结果进行比较,BO-CNN-LSTM表现出更高拟合精度。其中R2相对提高值为[4。63%,8。67%],MSE的数量级由10-2降至10-3;3)通过BO-CNN-LSTM预测2023年锡林郭勒草原干旱空间分布,结果显示该区域整体呈干旱态势。其中东乌珠穆沁旗站点区域属于中旱,其它区域均属于重旱。[结论]BO-CNN-LSTM具有较高的计算精度,尤其适用于预测SPEI-12,故可将其应用于年时间尺度干旱预测。
Drought prediction model for the Xilingol grassland based on BO-CNN-LSTM
[Objective]Reliable and effective monitoring can mitigate the impact of drought disasters on socio-economic development and natural ecosystems. This study adopted the BO-CNN-LSTM coupled neural network as adrought prediction model.[Method]First,the memory function of long short-term memory (LSTM) was inte-grated into the fully connected layer of the convolutional neural network (CNN). Second,to determine the optimal hyperparameters for LSTM,the probability surrogate model and acquisition function from the Bayesian optimization (BO) algorithm wereintroduced. Finally,a BO-CNN-LSTM coupled neural network model was constructed to predict the drought conditions in the Xilingol grassland.[Result](1) The prediction accuracy of the BO-CNN-LSTM model increased with the time scale,withthe highest prediction accuracy observed under the 12-month scale for the Standardized Precipitation-Evapotranspiration Index (SPEI). The determination coefficient R2 of SPEI-12 for each site exceeded 98%.(2) Compared to the simulation results of the LSTM model for SPEI-12,the proposed model exhibited higher fitting accuracy,showinga relative improvement in R2 of[4.63%,8.67%]. The order of magnitude of mean squared error (MSE) at each site had decreased from 10-2 to 10-3.(3) Using the model to predict the spatial distribution of drought in the Xilingol grassland for 2023. indicated that the region as a whole was experi-encing drought.Especially,the Dongwuzhumuqin Banner area was classified as experiencing moderate drought,while other areas were classified as severe drought.[Conclusion]The results demonstrate that the BO-CNN-LSTM model has high computational accuracy,making it particularly suitable for predicting SPEI-12.Therefore,the meth-ods in this study can be effectively applied to drought prediction on an annual time scale.

drought predictionBayesian optimization algorithmconvolutional neural networkslong short-term memory networkXilingol grassland

杜娟、董世杰、贺云

展开 >

内蒙古财经大学统计与数学学院,内蒙古 呼和浩特 010070

内蒙古农业大学水利与土木建筑工程学院,内蒙古 呼和浩特 010018

干旱预测 贝叶斯优化算法 卷积神经网络 长短期记忆网络 锡林郭勒草原

2024

草原与草坪
中国草学会 甘肃农业大学

草原与草坪

CSTPCD
影响因子:0.686
ISSN:1009-5500
年,卷(期):2024.44(4)