首页|基于机器视觉的白芍药材双面品质检测系统

基于机器视觉的白芍药材双面品质检测系统

扫码查看
为提高白芍品质检测的准确度和效率,提出一种基于机器视觉技术的双面白芍品质检测系统.通过镜面反射,系统对药材上下两面图像同时采集处理,以检测药材的品质.除对比分析单面和双面图像的识别效果外,还在 YOLOv8s 模型中引入 Shuffle Attention 注意力机制和 Focal EIOU Loss损失函数优化算法.通过实验对比,白芍的单面识别平均精度均值为94.4%,双面识别的平均精度均值为92.8%,改进后的算法对双面白芍图像的识别平均精度均值达到 99.3%,同时可避免样本不均衡引起的预测偏向性.实验结果验证了白芍药材双面品质检测系统的可行性和实用性.
Double-sided Quality Detection System of Debark Peony Root Based on Machine Vision
A double-sided quality inspection system for debark peony root based on machine vision technology is proposed to improve the accuracy and efficiency of quality testing.Utilizing the principle of mirror reflection,images of both sides of the medicinal materials are simultaneously captured and processed to detect their quality.By comparing the recognition performance of single-sided and dual-sided images,the YOLOv8s model introduces the Shuffle Attention mechanism and Focal EIOU Loss optimization algorithm.Experimental results show that the average recognition accuracy for single-sided debark peony root is 94.4%,while for the dual-sided,it is 92.8%.With the improved algorithm,the average recognition accu-racy for dual-sided debark peony root images reaches 99.3%,while also mitigating prediction bias caused by sample imbalance.The experimental results verify the feasibility and practicality of the dual-sided quality inspection system for debark peony root medicinal materials.

machine visiondouble-sided detectiondebark peony rootquality inspection

陈泽伟、乔印虎、周玉蝶

展开 >

安徽科技学院机械工程学院,安徽 滁州 233100

机器视觉 双面检测 白芍药材 品质检测

安徽省教育厅安徽高校自然科学研究项目

2022AH040238

2024

常州工学院学报
常州工学院

常州工学院学报

影响因子:0.274
ISSN:1671-0436
年,卷(期):2024.37(2)
  • 15