首页|改进的RFM模型和K-means算法在会员分类中的应用研究

改进的RFM模型和K-means算法在会员分类中的应用研究

扫码查看
针对传统RFM模型用于会员分类会产生失真的问题,对RFM模型提出了改进,增加了客户关系长度和客户购买周期两个参数.同时针对传统的K-means算法存在的问题,提出了一种基于样本对象特征方差加权与中心初始化的K-means算法.利用改进的RFM模型对会员进行分类,可以有效地提高分类效率.
Research on the Application of Improved RFM Model and K-Means Algorithm in Membership Classification
Aiming at the distortion caused by traditional RFM models used for member classification,this paper proposes an improve-ment to the RFM model by adding two parameters:customer relationship length and customer purchase cycle.At the same time,a K-means algorithm based on sample object feature weighting and central initialization is proposed to address the prob-lems of traditional K-means algorithms.Using the improved RFM model for member classification can effectively improve classification efficiency.

RFM modelK-means clusteringmembership classification

张利斌

展开 >

常州信息职业技术学院智能装备学院 江苏常州 213164

RFM模型 K-means聚类 会员分类

2024

常州信息职业技术学院学报
常州信息职业技术学院

常州信息职业技术学院学报

影响因子:0.523
ISSN:1672-2434
年,卷(期):2024.23(3)
  • 6