首页|利用长短期记忆网络LSTM对赤道太平洋海表面温度短期预报

利用长短期记忆网络LSTM对赤道太平洋海表面温度短期预报

扫码查看
海表面温度作为海洋中一个最重要的变量,对全球气候、海洋生态等有很大的影响,因此十分有必要对海表面温度(SST)进行预报.深度学习具备高效的数据处理能力,但目前利用深度学习对整个赤道太平洋的SST短期预报及预报技巧的研究仍较少.本文基于最优插值海表面温度(OISST)的日平均SST数据,利用长短期记忆(LSTM)网络构建了未来10天赤道太平洋(10°S~10°N,120°E~80°W)SST的逐日预报模型.LSTM预报模型利用1982~2010年的观测数据进行训练,2011~2020年的观测数据作为初值进行预报和检验评估.结果表明:赤道太平洋东部地区预报均方根误差(RMSE)大于中、西部,东部预报第1天RMSE为0.6℃左右,而中、西部均小于0.3℃.在不同的年际变化位相,预报RMSE在拉尼娜出现时期最大,正常年份次之,厄尔尼诺时期最小,RMSE在拉尼娜时期比在厄尔尼诺时期可达20%.预报偏差整体表现为东正、西负.相关预报技巧上,中部最好,可预报天数基本为10天以上,赤道冷舌附近可预报天数为4~7天,赤道西边部分地区可预报天数为3天.预报模型在赤道太平洋东部地区各月份预报技巧普遍低于西部地区,相比较而言各区域10、11月份预报技巧最低.总的来说,基于LSTM构建的SST预报模型能很好地捕捉到SST在时序上的演变特征,在不同案例中预报表现良好.同时该预报模型依靠数据驱动,能迅速且较好地预报未来10天以内的日平均SST的短期变化.
Short-Term Sea Surface Temperature Forecasts for the Equatorial Pacific Based on Long Short-Term Memory Network
As one of the important variables in the ocean,SST(sea surface temperature)and its changes significantly impact global climate and marine ecology;therefore,it is necessary to forecast SST.Deep learning is highly efficient for data processing;however,it is rarely used in the short-term forecasting of the equatorial Pacific SST pattern.Based on the LSTM(long short-term memory)network,this paper constructs a daily forecast model of SST for the tropical Pacific Ocean(10°S-10°N,120°E-80°W)for the next 10 days.The proposed model forecasts SST using observations from 1982 to 2010 as a training set and data from 2011 to 2020 as a test set.The results show that the forecast RMSE(root mean square error)for the eastern equatorial Pacific region is larger than those for the central and western areas.The RMSE for the east basin is approximately 0.6℃ on the first day of the forecast,while those for the western and central regions are less than 0.3℃.The forecast skill of the model for different phases of the El Nino-Southern Oscillation is examined.RMSE is the largest in the La Nina period,followed by normal years,and the smallest in the El Nino period.RMSE in the La Nina period is more than 20%in some regions than in the El Nino period.The forecast error is positive in the east and negative in the west.The number of predictable days is more than 10 days.Specifically,the number of predictable days near the equatorial cold tongue is 4-7 days,while that in the western equatorial regions is 3 days.The model shows lower forecast skills in the eastern equatorial Pacific regions than in the western regions.In terms of skills for various months,the skill level is lower in October and November than in other months.In general,the SST forecast model based on LSTM can satisfactorily capture the evolutionary characteristics of the SST time series,and the forecast performance is high for the pan-tropical Pacific regions.Furthermore,the running time of the proposed data-driven forecast model for predicting the daily average SSTs for the next 10 days is very fast and more efficient than that of traditional dynamical models.

Sea surface temperatureLSTM(long short-term memory)Short-term forecastsEquatorial Pacific

张桃、林鹏飞、刘海龙、郑伟鹏、王鹏飞、徐天亮、李逸文、刘娟、陈铖

展开 >

中国科学院大气物理研究所大气科学与地球物理流体动力学数值模拟国家重点实验室,北京 100029

中国科学院大学地球与行星科学学院,北京 100049

哈尔滨工业大学电子与信息工程学院,哈尔滨 150001

北京应用气象研究所,北京 100029

西北工业大学航海学院,西安 710072

展开 >

海表面温度 LSTM(long short-term memory) 短期预报 赤道太平洋

国家重点基础科学发展计划项目国家重点基础科学发展计划项目国家自然科学基金项目国家自然科学基金项目

2022YFC31048022020YFA06089024197602641931183

2024

大气科学
中国科学院大气物理研究所

大气科学

CSTPCD北大核心
影响因子:2.11
ISSN:1006-9895
年,卷(期):2024.48(2)
  • 40