首页|基于动态动作覆盖的深度强化学习新闻推荐

基于动态动作覆盖的深度强化学习新闻推荐

扫码查看
新闻推荐系统对新媒体新闻传播有着重要作用.提出了一种以深度强化学习为基础的推荐系统,旨在结合神经网络的表征能力和强化学习的策略选择能力来提升新闻推荐效果.使用动态动作掩码加强对用户短期兴趣的判断能力,使用优化缓存机制提升经验缓存的使用效率,通过区域遮蔽性质的奖励设计加快模型训练,从而提高推荐系统在新闻推荐领域的表现.实验表明,所提模型在新闻数据集上的推荐准确率与主流的神经网络推荐方法相当,且在排序性能上优于当前先进的推荐算法.
Deep reinforcement learning news recommendation based on dynamic action coverage
News recommendation system plays an important role in news dissemination of new media. This paper proposed a recommendation system based on deep reinforcement learning, which aimed to combine the representation ability of neural network and the strategy selection ability of reinforcement learning to improve the effect of news recommendation. This paper used dynamic action masks to enhance the ability of judging the short-term interests of users, used the optimization cache mechanism to improve the efficiency of experience cache use, and accelerated model training through the reward design of regional masking nature to improve the performance of the recommendation system in the field of news recommendation. Experimental results show that the accuracy of the proposed model in news data sets is comparable to the current mainstream neural network recommendation methods, and its ranking performance is better than others.

news recommendationreinforcement learningdynamic maskadvantage cacheinternal reward

董相宏、安俊秀

展开 >

成都信息工程大学软件工程学院,四川 成都 610000

新闻推荐 强化学习 动态掩码 优势缓存 内在奖励

国家社会科学基金

22BXW048

2024

大数据
人民邮电出版社

大数据

CSTPCD
ISSN:2096-0271
年,卷(期):2024.10(3)