首页|基于三阶张量的大规模数据谱聚类集成算法

基于三阶张量的大规模数据谱聚类集成算法

扫码查看
为了降低大规模数据谱聚类计算负担,进一步提高聚类的准确性和鲁棒性,提出了一种基于三阶张量的大规模数据谱聚类集成算法.首先,提出一种混合代表最近邻近似方法构造数据间的稀疏亲和子矩阵;然后将稀疏亲和子矩阵表示为二部图,通过图分割的方法得到初步聚类结果;最后,提出三阶张量集成方法,将多个聚类结果进行融合,得到最终的聚类结果.在大规模的真实数据集和合成数据集上验证,相较经典的谱聚类算法、聚类集成算法以及近年来对其改进的算法,该算法表现出更优异的性能.
Spectral clustering ensemble algorithm based on three-order tensor for large-scale data
In order to reduce the computational burden of large-scale data spectral clustering and further improve the clustering accuracy and robustness, the spectral clustering ensemble algorithm based on the three-order tensor for large-scale data was proposed. The sparse affinity sub-matrix was first constructed by the mixed representative nearest neighbor approximation method. The sparse affinity sub-matrix was then represented as a bipartite graph. The preliminary clustering results were obtained by Graph Segmentation. Finally, an unified clustering result was obtained by fusing multiple clustering results through the three-order tensor ensemble method. On the real datasets and the synthetic datasets, the proposed algorithm showed a better performance compared to the classical spectral clustering algorithm, the clustering ensemble algorithm, and the improved algorithms in recent years.

data clusteringlarge-scale dataspectral clusteringthree-order tensorclustering ensemble

仵匀政、杜韬、周劲、陈迪、王心耕

展开 >

济南大学信息科学与工程学院,山东 济南 250024

山东省网络环境智能计算技术重点实验室,山东 济南 250024

数据聚类 大规模数据 谱聚类 三阶张量 聚类集成

国家自然科学基金国家自然科学基金山东省自然科学基金

6227316461873324ZR2019MF040

2024

大数据
人民邮电出版社

大数据

CSTPCD
ISSN:2096-0271
年,卷(期):2024.10(3)