首页|面向NVM的IoT时序数据多态协作压缩策略

面向NVM的IoT时序数据多态协作压缩策略

扫码查看
压缩策略是影响IoT时序数据存储系统性能的重要因素,而现有压缩策略缺乏针对NVM与IoT时序数据特性的优化机制.因此,提出了面向NVM的IoT时序数据多态协作压缩策略.首先,给出了IoT时序数据的组织结构.然后,针对IoT时序数据在一段时间内较稳定以及在用户态与内核态读写NVM适合的粒度差异较大的情况,设计了分层压缩策略.在用户态接收数据时,采用轻量级的数据压缩算法减少需存储的数据量,也减小了对IoT时序数据的存储效率的影响;针对IoT系统以查询和分析异常时序数据为主的特性,设计了深度压缩算法,在内核态对历史IoT时序数据进行深度压缩.其次,针对深度压缩历史IoT时序数据与存储新接收的IoT时序数据之间对NVM带宽的竞争,提出了写带宽保证的动态调整算法.最后,构建了面向NVM的IoT时序数据多态协作压缩策略原型PCCTSMS,并使用YCSB-TS工具进行测试与分析.实验结果表明,与InfluxDB、OpenTSDB、KairosDB和TVStore相比,PCCTSMS最高能提升161.3%的写吞吐率以及减少14.6%的存储空间.
A polymorphic cooperative compression strategy for IoT time series data based on NVM
The compression strategy plays an important role in the performance of IoT time series data storage system. However, the current compression strategies can not adapt to the characteristics of NVM and IoT time series data. This paper proposes a polymorphic cooperative compression strategy for IoT time-series data based on NVM. Firstly, the overall structure of IoT time series data is given. Then, to address the consistent patterns in IoT time series data and the different granularity between user-space and kernel-space operations on NVM, a dual-compression strategy is devised. Initially, a lightweight compression method is applied directly as IoT time series data is received in user-space. This method efficiently reduces the volume of data for storage, while minimizing the impact on the timeliness of data storage. Moreover, a deep compression algorithm is designed for the kernel-space, primarily focusing on querying and analyzing anomalous time series data. Additionally, to address the competition for NVM bandwidth between deep compression and data storage, a dynamic adjustment algorithm that guarantees write bandwidth is proposed. Finally, a prototype of the polymorphic cooperative compression strategy is implemented and YCSB-TS is used to evaluate the results. The results show that the proposed method can effectively improve the write throughput of IoT time-series data by up to 161.3% and reduce the storage space by up to 14.6%, compared with InfluxDB, OpenTSDB, KairosDB and TVStore.

data compressionIoTtime series datanon-volatile memorystorage system

蔡涛、雷天乐、牛德姣、戴健飞、黄泽宇、倪强强

展开 >

江苏大学计算机科学与通信工程学院,江苏 镇江 212013

数据压缩 IoT 时序数据 非易失性内存 存储系统

国家重点研发计划项目

2019YFB1600500

2024

大数据
人民邮电出版社

大数据

CSTPCD
ISSN:2096-0271
年,卷(期):2024.10(4)
  • 1