首页|基于轻量化PASMnet神经网络的立体匹配方法

基于轻量化PASMnet神经网络的立体匹配方法

扫码查看
针对传统方法用于立体匹配、三维地形重建效果差,而深度学习的方法模型大、速度慢的问题,提出了一种轻量化PASMnet神经网络的立体匹配方法.首先,对PASMnet进行结构化剪枝,精化参数配置,减少模型参数数量,提升模型运行速度.然后对归一化后的图像进行极线校正,得到成像平面平行的立体影像,进行立体匹配任务.在KITTI2015数据集上进行验证,实验结果表明改进的模型参数量减少为原模型的1/6,运行时间为0.56 s.剪枝量化后的模型运行速度更快,推理时间缩短,并且可以用于月面影像的立体匹配,拓展了模型应用.
Stereo Matching Method Based on Lightweight PASMnet Neural Network
A lightweight PASMnet neural network for stereo matching is proposed for the problems of poor results of traditional methods for stereo matching and 3D terrain reconstruction, and large models and low efficiencies of deep learning methods. First, structured pruning is performed on PASMnet to refine the parameter configuration, reduce the number of model parameters, and improve the model running speed. Then the normalized image is polar line corrected to obtain a stereo image with parallel imaging planes for the stereo matching task. Validated on the KITTI2015 dataset, the experimental results show that the improved model parameter quantity is reduced to 1/6 of the original model, and the running time is 0.56 s. The pruned and quantized model runs faster, has shorter in-ference time, and can be used for stereo matching of lunar surface images, which extend the model application.

PASMnetstereo matchingpruningquantizationlunar images

徐辛超、于佳琪

展开 >

辽宁工程技术大学 测绘与地理科学学院,辽宁 阜新 123000

PASMnet 立体匹配 剪枝 量化 月面影像

国家自然科学基金国家自然科学基金

4207144741601494

2024

测绘与空间地理信息
黑龙江省测绘学会

测绘与空间地理信息

影响因子:0.788
ISSN:1672-5867
年,卷(期):2024.47(3)
  • 15