首页|无人机影像湿地典型要素分类方法对比研究

无人机影像湿地典型要素分类方法对比研究

扫码查看
针对厘米级的无人机影像,选取无锡某湿地公园作为研究对象,首先对湿地影像进行多尺度分割并利用ESP工具获取最佳分割参数,再进行特征选择,选取决策树(DT)、贝叶斯(Bayes)、随机森林(RF)等3种分类方法对湿地典型要素进行分类,并对比分析不同方法的分类结果及精度.对比结果表明,随机森林算法在湿地典型要素分类中精度最高,决策树和贝叶斯分类算法精度逊色于随机森林.从分类效率来看,随机森林算法耗时最长且涉及参数设置调整,而贝叶斯算法效率大幅领先决策树和随机森林,且该算法操作简单、无参数设置,易于在生产中应用.
Comparative Study on Classification Methods of Typical Wetland Features in UAV Images
Aiming at the centimeter-level resolution UAV images, a wetland park in Wuxi is selected as the research object. Firstly, the wetland image is segmented at multiple scales, and the ESP tool is used to obtain the best segmentation parameters. Then, the fea-ture is selected, and three classification methods such as decision tree (DT), Bayesian (Bayes) and random forest (RF) are selected to classify the typical wetland features. The classification results and accuracy of different methods are compared and analyzed. The comparison results show that the accuracy of random forest algorithm is the highest in the classification of typical wetland elements, and the accuracy of decision tree and Bayesian classification algorithm is inferior to that of random forest. In terms of classification effi-ciency, the random forest algorithm takes the longest time and involves parameter setting adjustment, while the efficiency of Bayesian algorithm is much higher than that of decision tree and random forest. Moreover, the algorithm has simple operation, no parameter set-ting and is easy to be applied in production.

UAV remote sensingdecision treeBayesrandom forestmulti-scale segmentation

王胜利、李旭、谢强

展开 >

江苏省地质测绘院, 江苏 南京 211102

无人机遥感 决策树 贝叶斯 随机森林 多尺度分割

江苏省地质矿产勘查局科研项目江苏省地质矿产勘查局科研项目江苏省自然资源科技项目

2020KY112021KY172021058

2024

测绘与空间地理信息
黑龙江省测绘学会

测绘与空间地理信息

影响因子:0.788
ISSN:1672-5867
年,卷(期):2024.47(3)
  • 11