首页|机载LiDAR点云数据的组合滤波算法研究

机载LiDAR点云数据的组合滤波算法研究

扫码查看
针对采用渐进式形态学滤波算法进行机载LiDAR点云滤波时存在的滤波效果不佳、地形特征保留不明显的问题,本文提出了一种改进不规则三角网的后处理滤波算法,构建组合式机载LiDAR点云滤波算法.该组合算法有效地结合了渐进式形态学滤波算法与改进TIN滤波算法的优势,首先采用渐进式形态学滤波算法对原始机载LiDAR点云数据进行处理,提取得到初始地面点;其次优化传统TIN滤波算法,以初始地面点及种子点构建TIN,通过连续迭代提取得到精细化地面点.为验证本文提出滤波算法的可靠性与优越性,选取宁波市某地2组机载LiDAR点云数据进行实验,结果表明,与较单一的渐进式形态学滤波算法、TIN滤波算法地面点提取结果相比较,本文改进滤波算法提取地面点的Ⅰ类误差、Ⅱ类误差及总误差均更低,且不受地形条件限制,具有较高的适应性,验证了本文提出改进滤波算法的可靠性与优越性.
Research on Combined Filtering Algorithm of Airborne LiDAR Point Cloud Data
In order to solve the problems of poor filtering effect and unobvious terrain feature reservation when progressive morphologi-cal filtering algorithm is used to filter airborne LiDAR point cloud, this paper proposes a post-processing filtering algorithm to improve the irregular triangular network (TIN), and constructs a combined airborne LiDAR point cloud filtering algorithm. The combined algo-rithm effectively combines the advantages of the progressive morphological filtering algorithm and the improved TIN filtering algorithm. First, the progressive morphological filtering algorithm is used to process the original airborne LiDAR point cloud data and extract the initial ground points; Secondly, the traditional TIN filtering algorithm is optimized. TIN is constructed from initial ground points and seed points, and refined ground points are obtained through continuous iterative extraction. In order to verify the reliability and superi-ority of the filtering algorithm proposed in this paper, two groups of airborne LiDAR point cloud data from a certain place in Ningbo are selected for experiments. The results show that the improved filtering algorithm has lower class Ⅰ error, class Ⅱ error and total error of extracting ground points than the independent progressive morphological filtering algorithm and TIN filtering algorithm, and is not lim-ited by terrain conditions, with higher adaptability. The reliability and superiority of the improved filtering algorithm proposed in this paper are verified.

progressive morphological filtering algorithmtriangular irregular network filtering algorithmairborne LiDAR point clouddigital elevation model

孙爽杰、李学涛

展开 >

宁波市阿拉图数字科技有限公司,浙江 宁波 315000

渐进式形态学滤波算法 不规则三角网滤波算法 机载LiDAR点云 数字高程模型

2024

测绘与空间地理信息
黑龙江省测绘学会

测绘与空间地理信息

影响因子:0.788
ISSN:1672-5867
年,卷(期):2024.47(3)
  • 14