首页|Volterra级数混沌自适应模型在变形分析中的应用

Volterra级数混沌自适应模型在变形分析中的应用

扫码查看
针对变形监测数据混沌序列的特点,提出一种基于Volterra级数的混沌时间序列变形预测模型.经过相空间重构,确定合适的嵌入维数和延迟时间,输入Volterra级数自适应预测模型,然后得到变形量的预测值.将预测值与实际值及其他预测模型的预测结果进行比较,发现基于Volterra级数的混沌时间序列预测模型精度较高,在变形预测上是可行的.
Application of Volterra Series Chaos Adaptive Model in Deformation Analysis
According to the characteristics of chaotic time series of deformation monitoring data, a deformation prediction model of cha-otic time series based on Volterra series is proposed. After phase space reconstruction, the suitable embedding dimension and delay time are determined, and the adaptive prediction model of Volterra series is input, then the prediction value of deformation quantity is obtained. By comparing the predicted value with the actual value and the prediction results of other prediction models, it is found that the chaotic time series prediction model based on Volterra series has higher accuracy and is feasible in deformation prediction.

Volterra serieschaotic time seriesdeformation prediction

彭磊

展开 >

中国电建集团河北省电力勘测设计研究院有限公司,河北 石家庄 050031

Volterra级数 混沌时间序列 变形预测

2024

测绘与空间地理信息
黑龙江省测绘学会

测绘与空间地理信息

影响因子:0.788
ISSN:1672-5867
年,卷(期):2024.47(3)
  • 5