首页|基于多时相Sentinel-2数据的成都平原主要农作物分类

基于多时相Sentinel-2数据的成都平原主要农作物分类

扫码查看
针对成都平原落实最严格的耕地保护制度对耕地"非农化""非粮化"快速、动态监测的需求,本文研究了基于多时相Sentinel-2数据的农作物分类方法,利用主成分分析,降低了冗余信息,提高了分类精度.以2021年成都平原崇州市的7景Sentinel-2多光谱影像为数据源,构建了时序多光谱、时序主成分波段、时序植被指数、典型时相多光谱+时序植被指数等4种分类数据集,开展基于支持向量机的主要农作物分类研究.研究表明:利用主成分分析,能有效提高主要农作物的用户精度,降低农作物分类的错分率;基于典型时相多光谱+时序植被指数的数据集取得了最高的总体精度.
Main Crop Classification Based on Multi-temporal Sentinel-2 Data in Chengdu Plain
According to the need of fast and dynamic monitoring of cultivated land in Chengdu Plain in order to support the implemen-tation of the strictest cultivated land protection policy, this paper has studied the method of crop classification based on multi-temporal Sentinel-2 data. The Principal Component Analysis (PCA) has been introduced in the classification process to reduce redundant in-formation and improve classification accuracy. Using 7 Sentinel-2 multispectral images of Chongzhou city in Chengdu Plain in 2021 as the data source, four classification datasets, including time-series multispectral, time-series principal component bands, time-series vegetation index, and typical time-series multispectral+time-series vegetation index were constructed to carry out research on main crop classification based on support vector machine. The results show that the principal component analysis can effectively improve the user accuracy of main crop and reduce the misclassification rate of crops. The datasets based on typical time-phase multispectral+tem-poral vegetation index achieves the highest overall accuracy.

Chengdu PlainSentinel-2principal component analysiscrop classification

黄琼仪、李亮、薛鹏、应国伟

展开 >

四川省第三测绘工程院,四川成都 610500

成都平原 Sentinel-2 主成分分析 农作物分类

四川省科技厅重点研发项目四川省自然资源科研项目(2022)四川省新型基础测绘技术研究补助计划(2022)

2022YFS0464KJ-2022-392022KJ002

2024

测绘与空间地理信息
黑龙江省测绘学会

测绘与空间地理信息

影响因子:0.788
ISSN:1672-5867
年,卷(期):2024.47(4)
  • 8