首页|一种基于多特征组合的EnMap-BOX土地利用分类方法研究

一种基于多特征组合的EnMap-BOX土地利用分类方法研究

扫码查看
为研究多特征组合在国产高分卫星影像土地利用分类中的应用效果,本文采用GF6-WFV多光谱影像数据,构建基于光谱波段、植被指数、纹理特征的多特征组合,并采用ReliefF算法进行特征优选获取信息量冗余较小的优选特征集合,结合EnMap-BOX工具包寻优改进的SVM算法中惩罚参数C和核函数系数g获取最优分类模型,对研究区进行分类.结果表明:1)特征选择能够较好地降低多特征集合的信息量冗余.2)基于特征选择的改进SVM算法模型能获取较高的土地利用分类精度,总体精度达到82.89%,Kappa系数达到0.78,可以为土地利用分类提供一种具有较高应用价值的方法.
Research on EnMap-BOX Land Use Classification Method Based on Multi-feature Combination
In order to study the application effect of multi-feature combination in land use classification of high-resolution satellite im-ages in China. In this paper, GF6-WFV multi-spectral image data was used to build a multi-feature combination based on spectral band, vegetation index and texture features, and ReliefF algorithm was used for feature optimization to obtain the optimal feature set with less information redundancy. The optimal classification model was obtained by combining the penalty parameter C and kernel function coefficient g in the improved SVM algorithm of EnMap-BOX toolkit, and the study area was classified. The results show that: 1) Feature selection can effectively reduce the information redundancy of multi-feature sets. 2) The improved SVM algorithm model based on feature selection can obtain a high land use classification accuracy, with the overall accuracy reaching 82.89% and the Kap-pa coefficient reaching 0.78, which can provide a method with high application value for land use classification.

ReliefFEnMap-BOXimproved SVM algorithmland use classification

柴学文、苏宁、李先从、吴立章

展开 >

温州大地测绘有限公司,浙江温州 325000

浙江省测绘科学技术研究院,浙江杭州 311100

ReliefF EnMap-BOX 改进的SVM算法 土地利用分类

2024

测绘与空间地理信息
黑龙江省测绘学会

测绘与空间地理信息

影响因子:0.788
ISSN:1672-5867
年,卷(期):2024.47(4)
  • 10