首页|空洞卷积模型遥感影像建筑快速检测方法研究

空洞卷积模型遥感影像建筑快速检测方法研究

扫码查看
基于端到端的检测框架,使用多空洞率卷积核组作为特征提取模块,并在不同特征提取层间设置了密集连接,来加强不同尺度特征图内的信息复杂度;以多尺度特征图融合为基础,构建了4个输出层的特征图上采样金字塔,最后通过数据增强提高了训练集内目标的表达能力.测试结果表明,本文方法在测试数据集上能够达到较高的检测精度,体现了良好的实时检测能力,并且对不同背景下多角度的房屋目标具有很好的泛化性能.该方法在城市违章建筑监管与智慧城市建设等领域具有较高的实用价值.
Research on Fast Detection Method of Remote Sensing Image Buildings Based on Hollow Convolution Model
Based on an end-to-end detection framework, this paper uses a multi-dilation rate convolution kernel group as a feature ex-traction module, and sets up dense connections between different feature extraction layers to enhance the information complexity in fea-ture maps of different scales; Based on multi-scale feature map fusion, the feature map upsampling pyramid of four output layers is constructed, and finally the expression ability of the target in the training set is improved through data augmentation. The test results show that the method in this paper can achieve high detection accuracy and real-time detection ability on the test data set, and has good generalization performance for multi-angle house targets in different backgrounds. This method has high practical value in the fields of urban illegal building supervision and smart city construction.

remote sensing imagebuilding detectionhollow convolution kerneldense connectionmulti-scale feature pyramid

刘瑶、亢玮、赵占营

展开 >

安徽宇呈数据技术有限公司,北京 100020

北京天下图数据技术有限公司,北京 100011

航天宏图信息技术股份有限公司,北京 100195

遥感影像 建筑物检测 空洞卷积核 密集连接 多尺度特征金字塔

2024

测绘与空间地理信息
黑龙江省测绘学会

测绘与空间地理信息

影响因子:0.788
ISSN:1672-5867
年,卷(期):2024.47(4)
  • 9