首页|基于视觉惯性SLAM的室内定位方法研究

基于视觉惯性SLAM的室内定位方法研究

Research on Indoor Positioning Method Based on Visual Inertial SLAM

扫码查看
针对纯视觉SLAM在光照变化明显、环境纹理较少及载体快速运动的室内场景中容易出现特征跟踪失败、定位精度下降等问题,本文提出了一种基于滑动窗口进行后端优化的视觉惯导紧耦合方法,融合了IMU信息以提高跟踪精度与系统的鲁棒性.该方法利用IMU预积分误差与单目视觉SLAM的重投影误差构建新的损失函数来进行状态估计,采用基于滑动窗口的非线性优化方法进行运动估计,实时恢复组合系统位姿.在实测数据集上的实验结果表明,本文方法在x轴方向上的均方根误差为0.124 m,y轴方向上的均方根误差为0.113 m,实现了厘米级精度的定位.
Aiming at the problem that pure visual SLAM is prone to feature tracking failure and positioning accuracy degradation in in-door scenes with obvious illumination changes, less environmental texture and rapid carrier motion, this paper proposes a visual iner-tial tight coupling method based on sliding window back-end optimization, which integrates IMU information to improve tracking accu-racy and system robustness. This method uses IMU pre-integration error and monocular vision SLAM re-projection error to construct a new loss function for state estimation, and uses a nonlinear optimization method based on sliding window for motion estimation to recov-er the pose of the combined system in real time. The experimental results on the measured data set show that the root mean square er-ror of the proposed method in the x-axis direction is 0.124 m, and the root mean square error in the y-axis direction is 0.113 m, which achieves centimeter-level positioning accuracy.

vision/inertialSimultaneous Localization and Mappingsliding windowtightly coupled

蒋欣

展开 >

辽宁省自然资源事务服务中心,辽宁沈阳 110034

视觉/惯性 同时定位与建图 滑动窗口 紧耦合

2024

测绘与空间地理信息
黑龙江省测绘学会

测绘与空间地理信息

影响因子:0.788
ISSN:1672-5867
年,卷(期):2024.47(4)
  • 1
  • 6