首页|基于视觉惯性SLAM的室内定位方法研究

基于视觉惯性SLAM的室内定位方法研究

扫码查看
针对纯视觉SLAM在光照变化明显、环境纹理较少及载体快速运动的室内场景中容易出现特征跟踪失败、定位精度下降等问题,本文提出了一种基于滑动窗口进行后端优化的视觉惯导紧耦合方法,融合了IMU信息以提高跟踪精度与系统的鲁棒性.该方法利用IMU预积分误差与单目视觉SLAM的重投影误差构建新的损失函数来进行状态估计,采用基于滑动窗口的非线性优化方法进行运动估计,实时恢复组合系统位姿.在实测数据集上的实验结果表明,本文方法在x轴方向上的均方根误差为0.124 m,y轴方向上的均方根误差为0.113 m,实现了厘米级精度的定位.
Research on Indoor Positioning Method Based on Visual Inertial SLAM
Aiming at the problem that pure visual SLAM is prone to feature tracking failure and positioning accuracy degradation in in-door scenes with obvious illumination changes, less environmental texture and rapid carrier motion, this paper proposes a visual iner-tial tight coupling method based on sliding window back-end optimization, which integrates IMU information to improve tracking accu-racy and system robustness. This method uses IMU pre-integration error and monocular vision SLAM re-projection error to construct a new loss function for state estimation, and uses a nonlinear optimization method based on sliding window for motion estimation to recov-er the pose of the combined system in real time. The experimental results on the measured data set show that the root mean square er-ror of the proposed method in the x-axis direction is 0.124 m, and the root mean square error in the y-axis direction is 0.113 m, which achieves centimeter-level positioning accuracy.

vision/inertialSimultaneous Localization and Mappingsliding windowtightly coupled

蒋欣

展开 >

辽宁省自然资源事务服务中心,辽宁沈阳 110034

视觉/惯性 同时定位与建图 滑动窗口 紧耦合

2024

测绘与空间地理信息
黑龙江省测绘学会

测绘与空间地理信息

影响因子:0.788
ISSN:1672-5867
年,卷(期):2024.47(4)
  • 1
  • 6