首页|FY3D地表温度质量评估和偏差订正方法研究

FY3D地表温度质量评估和偏差订正方法研究

扫码查看
我国FY3D卫星时间序列短,而气候业务应用需要长时间序列卫星遥感数据集,因而单独使用FY3D相关产品难以应用于气候业务.本研究在对我国FY3D LST和MODIS LST质量评估基础上,研发随机森林偏差订正算法,将FY3D LST产品订正到MODIS LST质量水平上,通过构建融合FY3D 和MODIS LST长时间序列产品,开展其气候业务应用研究.试验表明,该方法能够有效提高FY3D LST与MODIS LST的接近程度,为开展我国风云卫星气候业务应用提供技术参考.
Research on FY3D Land Surface Temperature Quality Assessment and Bias Correction Method
China's FY3D satellite time series is short,and climate business applications require long-term satellite remote sensing data sets,so it is difficult to use FY3D-related products alone for climate business applications.Based on the quality assessment of China's FY3D LST and MODIS LST,this study develops random forest bias correction algorithm to correct the FY3D LST product to the quality level of MODIS LST,and by constructing a long-term series product that integrates FY3D and MODIS LST,and its climate business application research is carried out.Experiments show that this method can effectively improve the closeness of FY3D LST and MODIS LST,and provide a technical method reference for the application of China's Fengyun satellite climate business.

FY3D LSTMODIS LSTquality controlrandom forestbias correction

陈彦红、王艳姣、白罩峰

展开 >

航天宏图信息技术股份有限公司,北京 100195

中国气象局国家气候中心,北京 100081

FY3D LST MODIS LST 质量控制 随机森林 偏差订正

&&风云卫星应用先行计划

FY-303-AS-11FY-APP-2021.0402

2024

测绘与空间地理信息
黑龙江省测绘学会

测绘与空间地理信息

影响因子:0.788
ISSN:1672-5867
年,卷(期):2024.47(5)
  • 15