首页|基于机载LiDAR数据的单木分割研究

基于机载LiDAR数据的单木分割研究

扫码查看
基于机载LiDAR数据进行单木分割,分别讨论了基于冠层高度模型的单木提取方法(FCHM)以及基于归一化点云的单木提取算法(FNPC).FCHM的分离单木的总正确率的均方根值为0.93,F_Score的均方根值为0.62,FNPC算法分别为0.90 和0.56,FCHM算法的精度优于FNPC算法.通过从不同的林相、林型、林分密度的分析得出,在林分密度小于400 棵/hm2 的单层针叶林中提取效果最好.
Research on Individual Tree Segmentation Based on Airborne LiDAR Data
Based on airborne LiDAR data for individual tree segmentation,this article discusses the individual tree extraction method based on canopy height model(FCHM)and the individual tree extraction algorithm based on normalized point cloud(FNPC).The root mean square value of the total accuracy of FCHM's segmentation of individual trees is 0.93,the root mean square value of F_Score is 0.62,and the total accuracy and F_Score of FNPC algorithm is 0.90 and 0.56,respectively.The accuracy of FCHM algo-rithm is better than that of FNPC algorithm.Through analysis of different forest forms,forest types,and stand densities,it was found that the extraction effect is best in a single layer coniferous forest with a stand density of less than 400 trees/hm2.

individual tree segmentationLiDAR point cloudthe canopy height modelnormalized point cloudNEWFOR public dataset

李国金

展开 >

大连市规划测绘事务服务中心,辽宁 大连 116000

单木分割 LiDAR点云 冠层高度模型 归一化点云 NEWFOR公开数据集

2024

测绘与空间地理信息
黑龙江省测绘学会

测绘与空间地理信息

影响因子:0.788
ISSN:1672-5867
年,卷(期):2024.47(5)
  • 7