首页|基于三维激光点云的地面提取

基于三维激光点云的地面提取

扫码查看
实现汽车无人驾驶技术的关键在于精准地提取地面信息,现阶段主要采用启发式算法和点云分割手段来实现地面提取.为提升地面识别精度以及评估各类机器学习算法运用效率,本文使用了KNN、决策树以及支持向量机3 种常见的机器学习分类方法对三维激光点云数据中的地面和非地面点进行识别分类.实验采用包含多重地物特征标记的城市场景3D点云数据集VMR-Oakland-v2 进行模型训练,并使用训练后的模型对实采三维点云数据进行分类验证,结果表明,KNN和决策树模型取得了较好的提取效果,从模型大小和训练时间上来看决策树模型占用空间较大,效率较低也取得了较好的分类精度.
Ground Extraction Based on 3D Laser Point Cloud
The key to realize the technology of automobile unmanned driving is to extract the ground information accurately.At pres-ent,heuristic algorithm and point cloud segmentation are mainly used to realize the ground extraction.In order to improve the ground recognition accuracy and evaluate the efficiency of various machine learning algorithms,this paper uses three common machine learn-ing classification methods,KNN,decision tree and support vector machine,to identify and classify ground and non-ground points in 3D laser point cloud data.In the experiment,the 3D point cloud data set VMR-Oakland-v2 of urban scene with multiple feature markers is used for model training,and the trained model is used to classify and verify the 3D point cloud data of real collection.The results show that KNN and decision tree models have achieved good extraction results.From the perspective of model size and training time,the decision tree model occupies a large space,has low efficiency,and achieves good classification accuracy.

ground point cloud extraction3D laser scanningmachine learningclassification algorithm

巫春涛、郑加富

展开 >

浙江省钱塘江管理局勘测设计院,浙江 杭州 310016

地面点云提取 三维激光扫描 机器学习 分类算法

2024

测绘与空间地理信息
黑龙江省测绘学会

测绘与空间地理信息

影响因子:0.788
ISSN:1672-5867
年,卷(期):2024.47(5)
  • 15