首页|基于语义分割的裂缝检测技术研究

基于语义分割的裂缝检测技术研究

扫码查看
在机器视觉的基础上,设计了一种基于语义分割的隧道裂缝检测系统.该系统使用数据采集车采集隧道表观图像,随后在经典U-Net分割算法的基础上,使用了网络深度更深的VGGNet16 替代原有编码网络,并引入迁移学习的方法优化了模型的鲁棒性,有效提高了分割模型的分割性能.该分割模型在测试集上的像素准确率和交并比分别达到了 98.96%和 0.807 9.实验验证结果表明,该系统满足隧道裂缝检测任务需求.
Research on Crack Detection Technology Based on Semantic Segmentation
Based on machine vision,this paper designs a tunnel crack detection system based on semantic segmentation.The system u-ses the data acquisition vehicle to collect the tunnel apparent image.Then,based on the classical U-Net segmentation algorithm,VG-GNet16 with deeper network depth is used to replace the original coding network,and the migration learning method is introduced to optimize the robustness of the model and effectively improve the segmentation performance of the segmentation model.The pixel accu-racy and intersection to union ratio of the segmentation model on the test set have reached 98.96%and 0.807 9 respectively.The ex-perimental results show that the system meets the requirements of tunnel crack detection.

crack detectionsemantic segmentationtransfer learning

王洪战、尹剑、侯杰、陈树翔

展开 >

中铁第六勘察设计院集团有限公司,天津 300308

安徽国钜工程机械科技有限公司,安徽 合肥 230000

中国铁路青藏集团有限公司,青海 西宁 810000

裂缝检测 语义分割 迁移学习

中铁六院重点课题青藏集团科研开发计划

KY-2021-15QZ2021-G01

2024

测绘与空间地理信息
黑龙江省测绘学会

测绘与空间地理信息

影响因子:0.788
ISSN:1672-5867
年,卷(期):2024.47(6)
  • 5