首页|一种显著性检测提取高分遥感影像建筑物的方法

一种显著性检测提取高分遥感影像建筑物的方法

扫码查看
针对高分辨率遥感影像上建筑物的特征,设计并实现了用于提取高分遥感影像上建筑物的深度学习显著性检测方法.首先,使用FCN语义分割高分遥感影像,并通过对高分遥感影像上独特性、紧凑性和背景性中水平特征,计算每个像素与像素之间的中水平特征差异,得到每个像素的特征图,并将这些特征图组合在一起得到全局先验特征图;其次,给出了显著检测目标方法,即在深度学习网络模型中输入全局先验特征图后获取全局先验显著图;最后,通过实验数据,采用准确率和召回率P-R曲线以及F-Measure作为评价指标对该方法进行了验证并对结果进行了分析,表明所提出的方法能够完整准确地提取高分遥感影像上建筑物,且计算速度快、性能优良、过程无须人工参与,具有较高的应用价值.
A Saliency Detection Method for Extracting Buildings from High-Resolution Remote Sensing Images
Aiming at the characteristics of buildings on high-resolution remote sensing images,a deep learning saliency detection method for extracting buildings on high-resolution remote sensing images is designed and implemented.Firstly,FCN semantics is used to segment high-resolution remote sensing images,and the difference between the mid-level features of each pixel is calculated according to the mid-level features of the high-resolution remote sensing image,such as uniqueness,compactness and background,and the feature map of each pixel is obtained,and these feature maps are combined together to obtain the global prior feature map;Secondly,the saliency detection target method is proposed,that is,the global prior significance map is obtained after the global prior feature map is input into the deep learning network model;Finally,through experimental data,the accuracy and recall rate P-R curve and F-Measure are used as evaluation indicators to verify the method and analyze the results.It is shown that the proposed method can completely and accurately extract high-resolution remote sensing images buildings with fast calculation speed,excellent performance,and the process of extracting element features without manual involvement,and have good application value.

deep learningsaliency detectionremote sensing imagebuilding extraction

张冬梅、李石磊

展开 >

北京大地宏图勘测科技有限公司,北京 100176

同方节能工程技术有限公司,北京 100083

深度学习 显著性检测 遥感影像 建筑物提取

2024

测绘与空间地理信息
黑龙江省测绘学会

测绘与空间地理信息

影响因子:0.788
ISSN:1672-5867
年,卷(期):2024.47(6)
  • 5