首页|轻型注意力机制遥感影像多类别目标检测方法研究

轻型注意力机制遥感影像多类别目标检测方法研究

Research on Multi-Category Target Detection Method of Remote Sensing Image with Light Attention Mechanism

扫码查看
针对常规遥感影像目标模型难以在低功耗硬件中部署运行的问题,提出一种轻型的遥感影像多类别目标检测模型.在模型特征提取网络不同层中分别使用了带有SE通道注意力模块的卷积核组与瓶颈结构的卷积核组进行特征提取,然后通过包含通道注意力的多尺度增强网络输出 3 个尺度的特征图参数进行最终检测.以RSOD、谷歌地球等作为数据源构建了数据集,并对其中的训练集进行了样本增强.试验结果表明,本文提出的模型能够对不同环境下的多类别目标实施快速精准测出,并且训练后模型占用内存较小,运行参数量低,能够部署在低功耗的硬件终端并对遥感影像中的目标实施快速精准检测.
Aiming at the problem that conventional remote sensing image target models are difficult to deploy and run on low-power hardware,this paper proposes a lightweight remote sensing image multi-category target detection model.In different layers of the fea-ture extraction network,the convolution kernel group with SE channel attention module and the convolution kernel group with the bot-tleneck structure are used for feature extraction,and then a multi-scale enhancement network containing channel attention is used to output feature map parameters of three scales for final detection.Using RSOD and Google Earth as data sources,the data set is con-structed,and the training set is enhanced with samples.The experimental results show that the model proposed in this paper can quickly and accurately detect multi-category targets in different environments,and the model after training occupies less memory and has a low number of operating parameters,and can be deployed in low-power hardware terminals to quickly and accurately detect ob-jects in remote sensing images.

remote sensing imagelightweight detection modelattention mechanismbottleneck structurefeature fusion

叶宇

展开 >

广东省地质局第七地质大队,广东 惠州 516008

遥感影像 轻量级检测模型 注意力机制 瓶颈结构 特征融合

2024

测绘与空间地理信息
黑龙江省测绘学会

测绘与空间地理信息

影响因子:0.788
ISSN:1672-5867
年,卷(期):2024.47(6)
  • 7