首页|基于POI-OD矩阵与GTWR分析共享单车出行特征与影响因素

基于POI-OD矩阵与GTWR分析共享单车出行特征与影响因素

扫码查看
共享单车的时空分布特征反映了居民的出行需求,单车出行的流动则体现了居民使用共享单车的目的性.本文基于东芝加哥中心区域 11 个月的共享单车出行数据的时空分布特征,结合POI分布建立POI-OD矩阵量化OD的流动特征,结合GTWR分析各类型POI与共享单车流入、流出量的相关性.结果表明:1)共享单车工作日呈现早晚高峰趋势,以短距离出行为主;2)交通运输类和餐饮类POI是主要转移热点;3)户外休闲类、餐饮类、娱乐类、工作教育类和交通运输类POI的数量对格网内共享单车的流入、流出量有积极影响,影响程度递减;住宅类和商业金融类POI的数量对格网内共享单车的流入、流出量有消极影响,住宅类影响最显著.
Analysis of Travel Characteristics and Influence Factors of Shared Bicycles Based on POI-OD Matrix and GTWR
Spatial and temporal characteristics of shared bicycles reflect the travel requirements of citizens,and the mobility of bicycle travel shows the purpose of residents using shared bicycles.Based on the spatial and temporal distribution characteristics of 11 months′shared bicycles′traveling data in downtown east Chicago,combined with the distribution of POI,this paper establishes a POI-OD ma-trix to quantify the liquidity features of OD.Then,the correlation between various types of POI and the inflow and outflow of shared bicycles is quantitatively analyzed combined with GTWR.Results notify:(1)Peaking trend in the morning and evening and short-dis-tance travel are the main travel features of shared bicycles in the study area on weekdays.(2)POI-OD matrix shows that transporta-tion POI and catering POI are hotspots.(3)Factor analysis shows that count of outdoor leisure POI,catering POI,entertainment POI,working and education POI,and traffic and transportation POI have different positive impacts on the inflow and outflow of shared bicycles on weekdays and weekends,with decreasing degree of influence.While the number of and commercial and financial POI have negative impacts on the inflow and outflow of shared bicycles on weekdays and weekends among grids and the impacts of residential POI are significant.

shared bicyclestravel characteristicsPOI-OD matrixGTWR

邹帅、蔡忠亮、李伯钊、苏世亮

展开 >

武汉大学 资源与环境科学学院,湖北 武汉 430079

共享单车 出行特征 POI-OD矩阵 地理时空加权回归

2024

测绘与空间地理信息
黑龙江省测绘学会

测绘与空间地理信息

影响因子:0.788
ISSN:1672-5867
年,卷(期):2024.47(6)
  • 8