首页|基于深度学习的高分二号影像农村道路提取

基于深度学习的高分二号影像农村道路提取

扫码查看
针对高分遥感影像在农村道路提取中的研究和应用少,提取结果存在边界不清晰和道路不完整等问题,本文以高分二号影像为数据源,提出一种改进的DeepLabv3+深度学习模型,优选MobileNetV2 作为特征提取网络,并在MobileNetV2 反向残差块中插入坐标注意力模块,使得网络能捕捉到具有精确位置的信息,同时在空间金字塔池化后加上通道注意力机制,使用多尺度注意力机制对输出特征进行合并,将注意力集中在信息量更大的特征上,避免使用多个相似的特征图.实验结果表明:改进后的 DeepLabv3+准确率达 85.74%,召回率为83.21%,F1 评分为 0.84,相比原始的DeepLabv3+模型,各精度指标都有一定的提升.本研究可为农村道路的高精度提取提供一定的技术支持.
Rural Road Extraction from GF-2 Image Based on Deep Learning
In view of the lack of research and application of high-resolution remote sensing images in rural road extraction,the extrac-tion results have some problems such as unclear boundaries and incomplete roads.In this paper,taking GF-2 image as the data source,an improved DeepLabv3+deep learning model is proposed.MobileNetV2 is selected as the feature extraction network,and the coordinate attention module is inserted into the reverse residual block of MobileNetV2,so that the network can capture the information with accurate position.At the same time,channel attention mechanism is added after the spatial pyramid pool,and multi-scale atten-tion mechanism is used to merge the output features,focusing on the features with more information and avoiding using multiple similar feature maps.The experimental results show that the accuracy of the improved DeepLabv3+model is 85.74%,the recall rate is 83.21%,and the F1 score is 0.84.Compared with the original DeepLabv3+model,each precision has been improved to some ex-tent.This study can provide some technical support for high-precision extraction of rural roads.

deep learningGF-2road extractionattention module

马良、何霄栋

展开 >

杭州市勘测设计研究院有限公司,浙江 杭州 310012

深度学习 高分二号 道路提取 注意力模块

2024

测绘与空间地理信息
黑龙江省测绘学会

测绘与空间地理信息

影响因子:0.788
ISSN:1672-5867
年,卷(期):2024.47(6)
  • 4