首页|GNSS变形监测数据降噪方法研究

GNSS变形监测数据降噪方法研究

扫码查看
为了提高GNSS变形监测数据降噪的效果,尽可能提取数据中的有用信息,本文结合局部均值分解方法与经验模态分解方法,提出一种新的LMD-EMD降噪方法.该组合降噪方法实现GNSS监测数据降噪的技术流程为:首先,使用LMD方法对原始GNSS监测数据进行分解,得到不同频段的乘积函数分量以及残余项,计算各分量Hust指数确定高频分量、低频分量分界点;其次,使用EMD方法对高频分量进一步分解,得到不同频段本征模态函数与残余项,通过计算各IMF分量的多尺度排列熵均值确定高频分量、低频分量分界点;最后,重构两次分解所得低频分量得到最终降噪信号.使用仿真模拟信号与实测GNSS监测数据对本文提出方法的有效性进行验证,结果表明相比于单一的LMD方法与EMD方法,本文提出组合降噪方法降噪结果的精度更高,能够精确地表达原始信号的变形趋势.
Research on Noise Reduction Method of GNSS Deformation Monitoring Data
In order to improve the noise reduction effect of GNSS deformation monitoring data and extract useful information from the data as much as possible,a new LMD-EMD noise reduction method is proposed by combining local mean decomposition(LMD)method with empirical mode decomposition(EMD)method.The technical process of the combined noise reduction method to reduce the noise of GNSS monitoring data is as follows:first,the original GNSS monitoring data is decomposed by LMD method to obtain the product function(PF)components and residual terms of different frequency bands,and the Hust index of each component is calculat-ed to determine the dividing point of high-frequency component and low-frequency component;Secondly,the EMD method is used to further decompose the high-frequency components to obtain the intrinsic mode function(IMF)and residual terms in different frequen-cy bands.The dividing points of high-frequency components and low-frequency components are determined by calculating the multi-scale permutation entropy mean of each IMF component;Finally,the final de-noising signal is obtained by reconstructing the low-fre-quency components obtained from the two decomposition.The effectiveness of the proposed method is verified by using simulated sig-nals and measured GNSS monitoring data.The results show that compared with the single LMD method and EMD method,the com-bined noise reduction method proposed in this paper has higher accuracy and can accurately express the deformation trend of the origi-nal signal.

local mean decompositionempirical mode decompositionnoise reductionGNSS

曹石磊、方猛、焦元冰

展开 >

杭州市勘测设计研究院有限公司,浙江 杭州 310012

浙江省测绘科学技术研究院,浙江 杭州 311100

局部均值分解 经验模态分解 降噪 GNSS

2024

测绘与空间地理信息
黑龙江省测绘学会

测绘与空间地理信息

影响因子:0.788
ISSN:1672-5867
年,卷(期):2024.47(6)
  • 9