首页|车载激光点云图像与全景图像相似度算法研究

车载激光点云图像与全景图像相似度算法研究

扫码查看
针对激光点云投影到平面获取的深度或强度图像与真彩色影像之间差异明显的问题,本文提出一种车载点云投影图像与全景图像相似度计算的算法.该算法首先将点云数据转换为平面投影影像,然后分别计算投影图像和全景影像中每个像素的梯度方向,并根据梯度方向来获得梯度方向的直方图,最后根据梯度方向直方图来计算点云投影图像和全景影像的相关系数.相关系数的大小反映了匹配的相似程度.本文算法的创新在于对梯度方向的计算进行了改进,将360°的梯度方向角归一化到0°—180°,能够有效地处理点云投影图像和全景影像之间由于像素属性不同造成的梯度方向不一致的问题,提高匹配的精度.
Research on Similarity Algorithm between Vehicle-borne Laser Point Cloud Images and Panoramic Images
Aiming at the obvious difference between the depth or intensity images obtained by projecting the laser point cloud onto the plane and the true color images. This paper presents an algorithm for calculating the similarity between vehicle-borne point cloud pro-jection images and panoramic images. The algorithm first converts the point cloud data into a plane projection images, then calculates the gradient direction of each pixel in the projection images and panoramic images respectively, obtains the histogram of the gradient direction according to the gradient direction, and finally calculates the correlation coefficient between the point cloud projection image and panoramic image according to the gradient direction histogram. The size of correlation coefficient reflects the similarity of matc-hing. The innovation of this algorithm is to improve the calculation of gradient direction, normalize the 360 degree gradient direction angle to less than 180 degrees, which can effectively deal with the inconsistency of gradient direction caused by different pixel attrib-utes between point cloud projection images and panoramic images, and improve the matching accuracy.

Laser point cloudpoint cloud depth imagespoint cloud intensity imagesgradientmutual information

尤静静、王玉琴、寇静行、马传宁

展开 >

地理信息工程国家重点实验室, 北京 100080

自然资源部第二大地测量队,黑龙江哈尔滨 150025

激光点云 点云深度图像 点云强度图像 梯度 互信息

&&

GA17A301

2024

测绘与空间地理信息
黑龙江省测绘学会

测绘与空间地理信息

影响因子:0.788
ISSN:1672-5867
年,卷(期):2024.47(7)
  • 3