首页|基于Swin Transformer遥感影像的建筑物提取方法

基于Swin Transformer遥感影像的建筑物提取方法

扫码查看
针对传统的高分辨率遥感影像建筑物提取精度较低和漏提、错提等问题,现有的大多数方法都依赖于卷积神经网络来解决,由于卷积运算的局部性,直接获取全局上下文信息充满了挑战.受具有强大全局建模能力的Swin Transformer的启发,本文提出了一种基于Swin Transformer模型影像建筑物提取方法.该方法采用U-net架构,使用Swin Transformer block来替代普通卷积提取上下文特征,进行局部和全局语义特征学习.利用该模型在WHU高分辨率遥感影像数据集上进行实验,对该方法与U-net、U-net++、AttentionUnet方法进行对比实验验证,结果表明,该方法能够有效提升建筑物提取的准确性和精度.
Building Extraction from Remote Sensing Images Based on Improved Swin Transformer
Aiming at the problems of low accuracy, omissions, and errors of traditional high-resolution remote sensing image building extraction, and most of the existing methods rely on convolutional neural networks, due to the locality of convolutional operations, di-rectly obtaining global context information is full of challenges, inspired by Swin Transformer with strong global modeling capabilities, this paper proposes a method of image building extraction based on Swin Transformer model. This method adopts U-net architecture, uses Swin Transformer block to replace ordinary convolutional extraction context features, and performs local and global semantic fea-ture learning. The model is used to perform experiment on the WHU high-resolution remote sensing image dataset, and the method is compared with U-net, U-net++, and AttentionUnet methods, and the results show that the method can effectively improve the cor-rectness and accuracy of building extraction.

building extractionSwin Transformerremote sensing imagesU-net

徐海洋、徐金鸿

展开 >

重庆交通大学智慧城市学院,重庆 400074

建筑物提取 Swin Transformer 遥感影像 U-net

国家重点研发计划

2021YFB2600603

2024

测绘与空间地理信息
黑龙江省测绘学会

测绘与空间地理信息

影响因子:0.788
ISSN:1672-5867
年,卷(期):2024.47(7)
  • 3