首页|基于改进Yolov5的遥感影像多目标检测方法研究

基于改进Yolov5的遥感影像多目标检测方法研究

扫码查看
提出一种基于改进Yolov5的遥感影像目标检测方法,在骨干网络内增加高效通道注意力机制来提高对正样本特征的学习效率,在多尺度特征融合层内增加一个检测输出特征图,来提高对小目标的检测精度,采用带有梯度模长的交叉熵损失函数对模型进行训练来缓解正负样本不平衡的问题.实验结果表明,本文所提出的改进方法在测试数据集上获得了较高的检测精度与很好的泛化能力,相比原始Yolov5有了显著提高,在测试环境下也能达到实时检测的水平.所提出的改进方法能够在资源调查、应急救援等领域具有很大的应用价值.
Research on Multi-target Detection Method of Remote Sensing Images Based on Improved Yolov5
A remote sensing image target detection method based on improved Yolov5 is proposed. An efficient channel attention mech-anism is added in the backbone network to improve the learning efficiency of positive sample features, and a detection output feature map is added in the multi-scale feature fusion layer to improve the accuracy of detection. For the detection accuracy of small targets, the cross-entropy loss function with gradient modulus is used to train the model to alleviate the problem of positive and negative sample imbalance. The experimental results show that the improved method proposed in this paper achieves high detection accuracy and good generalization ability on the test data set, which is significantly improved as compared with the original Yolov5, and can also reach the level of real-time detection in the test environment. The proposed improved method has great application value in the fields of resource survey and emergency rescue.

remote sensing imagesYolov5attention mechanismloss function

王国栋、马福生

展开 >

山东省国土测绘院,山东济南 250013

遥感影像 Yolov5 注意力机制 损失函数

2024

测绘与空间地理信息
黑龙江省测绘学会

测绘与空间地理信息

影响因子:0.788
ISSN:1672-5867
年,卷(期):2024.47(7)
  • 4