首页|基于SuperPoint和SuperGlue的图像特征匹配

基于SuperPoint和SuperGlue的图像特征匹配

扫码查看
基于SuperPoint和SuperGlue算法原理,将两者级联在一起,实现了完整的深度神经网络图像特征匹配流程.基于设计的深度神经网络,选取4组多源图像数据进行了特征匹配,并与5种传统特征匹配算法进行了对比.实验结果表明:本文设计的深度神经网络在多源图像特征提取、描述和匹配中具有稳定性强、鲁棒性高、识别特征点多且分布合理、正确匹配率高等特点.
Image Feature Matching Based on SuperPoint and SuperGlue
This article first introduces the principles of SuperPoint and SuperGlue algorithms,and achieves a complete deep neural net-work image feature matching process by cascading the two together. Based on the designed deep neural network,four sets of multi-source images were selected for image feature matching,and compared with five classic feature matching algorithms. The experimental results show that the deep neural network designed in this paper has strong stability,high robustness,multiple and reasonably distribu-ted recognition feature points,and high accuracy in feature extraction,description,and matching of multi-source images.

SuperPointSuperGluedeep learningdeep networkfeature matching

杨金玲、马俊海、曹先革

展开 >

东华理工大学测绘与空间信息工程学院,江西南昌 330013

深圳市新维测绘科技有限公司,广东深圳 518100

SuperPoint SuperGlue 深度学习 深度网络 特征匹配

2024

测绘与空间地理信息
黑龙江省测绘学会

测绘与空间地理信息

影响因子:0.788
ISSN:1672-5867
年,卷(期):2024.47(9)