首页|参数优化的SVM模型在建筑物变形预测中的应用

参数优化的SVM模型在建筑物变形预测中的应用

扫码查看
使用支持向量机模型进行变形预测时,模型参数的选取直接影响变形预测结果.为获取最优参数,本文将粒子群优化算法、遗传算法引入SVM模型中,构建组合预测模型.新的组合预测模型能够有效提高全局搜索能力,提升预测精度的同时提高模型的数据适应性.以实测建筑物变形数据为例进行实验,结果表明,相较于其他预测模型,本文提出组合预测模型预测结果的精度更高,稳定性更强,适用于实际工程项目变形数据预测.
Application of Parameter Optimized SVM Model in Building Deformation Prediction
When the support vector machine (SVM) model is used for deformation prediction,the selection of model parameters di-rectly affects the deformation prediction results. In order to obtain the optimal parameters,particle swarm optimization (PSO) algo-rithm and genetic algorithm (GA) are introduced into the SVM model to build a combined prediction model. The new combined pre-diction model can effectively improve the global search ability,the prediction accuracy and the data adaptability of the model. Taking the measured building deformation data as an example,the results show that compared with other prediction models,the combined prediction model proposed in this paper has higher accuracy and stability,and is suitable for the deformation data prediction of actual engineering projects.

support vector machineparticle swarm optimizationgenetic algorithmdeformation predictionaccuracy analysis

徐婧、张业

展开 >

宁波市阿拉图数字科技有限公司,浙江宁波 315000

支持向量机 粒子群优化算法 遗传算法 变形预测 精度分析

2024

测绘与空间地理信息
黑龙江省测绘学会

测绘与空间地理信息

影响因子:0.788
ISSN:1672-5867
年,卷(期):2024.47(9)