首页|一种改进U-Net模型的建筑物变化信息提取研究

一种改进U-Net模型的建筑物变化信息提取研究

扫码查看
建筑物的变化信息提取是遥感影像提取的重要内容之一,对土地调查、城市规划、土地执法等具有重要意义.针对原始U-Net模型预测效果较差、存在漏检等问题,本文提出了一种融合聚合残差卷积块和注意力模块的改进U-Net模型.结果表明,改进后的U-Net模型在建筑物变化信息提取上相比原始的U-Net模型,精度有很大的提升,可为建筑物变化监测提供一定的技术支持.
Research on Extraction of Building Change Information Based on an Improved U-Net Model
The extraction of building change information is one of the important contents of remote sensing image extraction,which is of great significance to land survey,urban planning and land law enforcement. Aiming at the problems of poor prediction effect and omis-sion detection in the original U-Net model,this paper proposes an improved U-Net model which integrates the aggregated residual convolution block and attention module. Compared with the original U-Net model,the accuracy of the improved U-Net model in building change information extraction is greatly improved. This study can provide some technical support for building change monito-ring.

deep learningbuilding extractionaggregated residual convolution blockattention mechanism

凡建林、姚辉、高叶

展开 >

浙江省测绘科学技术研究院,浙江杭州 310000

宁波冶金勘察设计研究股份有限公司,浙江宁波 315000

深度学习 建筑物提取 聚合残差卷积块 注意力机制

2024

测绘与空间地理信息
黑龙江省测绘学会

测绘与空间地理信息

影响因子:0.788
ISSN:1672-5867
年,卷(期):2024.47(9)