首页|基于改进YOLOv5的轻量级遥感目标检测方法

基于改进YOLOv5的轻量级遥感目标检测方法

扫码查看
基于YOLOv5提出一种改进的轻量级遥感影像目标检测方法.在特征提取端使用深度可分离卷积替代常规卷积核以降低计算量,同时引入坐标注意力机制来提高模型对小物体特征的学习强度.在特征增强端,以多层融合特征金字塔代替路径聚合网络来获取信息更为丰富的特征图.实验结果显示,本文所提出的改进模型在检测精度方面明显优于原始模型与对比模型,同时对于不同环境下的目标表现出了很好的鲁棒性,在测试硬件环境下产生的计算参数量少,能够达到实时检测的水平,可部署在算力有限的边缘计算硬件上开展实时的推理检测.
Lightweight Remote Sensing Target Detection Method Based on Improved YOLOv5
This paper proposes an improved lightweight remote sensing image target detection method based on YOLOv5. At the feature extraction end,depthwise separable convolution is used to replace the conventional convolution kernel to reduce the amount of compu-tation,and a coordinate attention mechanism is introduced to improve the learning strength of the model for small object features. At the feature enhancement end,a multi-layer fusion feature pyramid is used to replace the path aggregation network to obtain feature maps with more information richness. The experimental results show that the improved model proposed in this paper is significantly better than the original model and the comparison model in terms of detection accuracy,and at the same time,it shows good robustness to targets in different environments,and the amount of computational parameters generated in the test hardware environment is small,which can reach the level of real-time detection and can be deployed on edge computing hardware with limited computing power to car-ry out real-time inference detection.

remote sensing imageslightweight modelsYOLOv5coordinate attention

梁鹏飞

展开 >

福建船政交通职业学院,福建福州 350012

福建省经纬数字科技有限公司,福建福州 350001

遥感影像 轻量级模型 YOLOv5 坐标注意力

2024

测绘与空间地理信息
黑龙江省测绘学会

测绘与空间地理信息

影响因子:0.788
ISSN:1672-5867
年,卷(期):2024.47(10)