首页|基于空洞卷积与空间注意力的遥感影像小目标检测方法

基于空洞卷积与空间注意力的遥感影像小目标检测方法

扫码查看
针对遥感影像小目标检测时存在的精度较低,鲁棒性较差等问题,设计了一种深度学习检测模型.模型的骨干网络以CSPDarknet53为基础,将原始网络内的卷积核替换为空洞卷积核来增大感受野,同时通过引入空间注意力机制来提高模型对小尺寸正样本特征的学习权重;为提高送入检测端的特征图内信息丰富程度,采用多尺度聚合网络汇聚多个感受野下的特征信息,然后结合上/下尺寸采样与同尺寸特征图拼接输出3个尺寸的特征图参与检测.实验结果表明,本文提出模型在测试数据集上的检测精度明显高于同类对比模型,并且面对多种复杂场景具有很好的鲁棒性,在测试环境下能够实现对目标的实时检测.
Small Target Detection Method in Remote Sensing Images Based on Atrous Convolution and Spatial Attention
Aiming at the problems of low accuracy and poor robustness in the detection of small targets in remote sensing images,a deep learning detection model was designed. The backbone network of the model is based on CSPDarknet53,and the convolution ker-nel in the original network is replaced with an atrous convolution kernel to increase the receptive field. At the same time,the spatial attention mechanism is introduced to improve the learning weight of the model for small-sized positive sample features;in order to im-prove the richness of information in the feature map delivered to the detection end,a multi-scale aggregation network is used to aggre-gate feature information under multiple receptive fields,and then combined with upper and lower size sampling and feature map mosa-icking of the same size to output feature maps of three sizes to participate in detection. The experimental results show that the detection accuracy of the model proposed in this paper on the test dataset is significantly higher than that of similar comparison models,and it has good robustness in the face of a variety of complex scenes,and can achieve real-time detection of targets in the test environment.

remote sensing imagessmall target detectionatrous convolutionspatial attention mechanism

陶健

展开 >

长三角(嘉兴)城乡建设设计集团有限公司,浙江嘉兴 314000

遥感影像 小目标检测 空洞卷积 空间注意力机制

2024

测绘与空间地理信息
黑龙江省测绘学会

测绘与空间地理信息

影响因子:0.788
ISSN:1672-5867
年,卷(期):2024.47(10)