首页|遗传算法优化的BP神经网络模型在遥感水深反演中的应用

遗传算法优化的BP神经网络模型在遥感水深反演中的应用

扫码查看
针对传统BP神经网络模型在遥感影像水深反演中存在的缺陷,本文引入主成分分析(PCA)与遗传算法(GA),构建新的GA-BP神经网络模型,该改进模型利用GA对BP神经网络模型的权值与阈值进行优化并将优化值作为BP神经网络模型初始值.将该改进模型用于遥感影像水深反演实验中,结果表明,较单一的BP神经网络模型,该改进模型的收敛速度具有较大提升,水深反演精度也更高.
Application of BP Neural Network Model Optimized by Genetic Algorithm in Remote Sensing Water Depth Inversion
Aiming at the defects of traditional BP neural network model in water depth inversion of remote sensing images,this paper introduces Principal Component Analysis (PCA) and Genetic Algorithm (GA) to build a new GA-BP neural network model. The im-proved model uses GA to optimize the weights and thresholds of BP neural network model and takes the optimized values as the initial values of BP neural network model. The improved model is applied to the water depth inversion experiment of remote sensing images. The results show that the convergence speed of the improved model is greatly improved compared with the single BP neural network model,and the water depth inversion accuracy is also higher.

BP neural network modelprincipal component analysisgenetic algorithmwater depth inversionweight and threshold optimization

陈洲杰、陈华建、盛君

展开 >

舟山市自然资源和规划局,浙江 舟山 316013

临海市自然资源和规划局,浙江 台州 317000

杭州天图地理信息技术公司,浙江 杭州 310012

BP神经网络模型 主成分分析 遗传算法 水深反演 权值和阈值优化

2024

测绘与空间地理信息
黑龙江省测绘学会

测绘与空间地理信息

影响因子:0.788
ISSN:1672-5867
年,卷(期):2024.47(10)